python三大神器
#做网站后台
Python在网站后台这边有大量的成熟的框架,如django,flask,bottle,tornado,我曾经用过flask和django搭建了的两个网站已经上线
#写网络爬虫
Python写爬虫非常简单,库很健全
以下是我写的一些爬虫教程和心得
/post/17
/post/18
#科学计算
Python有三大神器:numpy,scipy,matplotlib,其中numpy很多底层使用C语言实现的,所以速度很快,我曾经用它参加各种数学建模大赛,完全可以替代r语言和MATLAB
以下是我写的科学计算简单教程
/post/16
#数据挖掘,机器学习
Python
的机器学习包很多,或者自己可以试着实现机器学习算法,因为Python的类似伪代码的语法,很容易快速实现自己的想法,另外主流的机器学习算法都有成熟
的包,加上谷歌开源的TensorFlow,常用的机器学习包:scikit-learn,pattern,jieba,pybrain等等
#数据科学
最近spark,Hadoop都开了Python的接口,所以使用Python做大数据的maprece也非常简单,加上py对数据库支持都很好,或者类似sqlalchemy的orm也非常强大好用
以及剩下的码算法,玩玩树莓派什么的我就不多说了,
py的强大其实在于他能迅速的实现想法
㈡ 手机Python编程神器-AidLearning
【下载和安装】
1、让我们一起来看下吧,直接上图。
第一眼看到是不是觉得很高逼格,暗黑画风,这很大佬。其实它就是------AidLearning。一个运行在安卓平台的linux系统,而且还包含了许多非常强大的IDE,就连宇宙最强大的编辑器vscode 也在其中。
https://590m.com/file/7715018-443117684,下载后我们打开它可以看到这幅画面:
3、我们等待它下完,千万不要关闭这个页面,否则前功尽弃。然后它还会配Aidlearning:
看到上图这幅画面,就算彻底安装成功了。
4、AidLearning(以下简称ad) 是一个不需要root便可以运行linux图形或者console端的apk,它内置Python环境,而且还自带Jupyter notebook 以及各种牛逼的东西,下面我们来看看吧。
【组件简介】
1、Document。系统的目录管理工具,用来管理整个系统的目录结构,你可以使用它管理ad中虚拟的linux系统目录,其实它就相当于我们手机中的文件管理。
2、safari。这是系统自带的浏览器,用过mac的应该知道,Safari浏览器很出名的,打开后是这样的画面:
怎么样,是不是很美了?
3、terminal。终端,跟linux一样的终端,这很复古,也很完美。
4、AidCode。这是ad内置的Python环境,而且这个环境最让人感到意外的是,它竟然有自动提示功能,这也真的是非常给力了,不信你可以看看:
5、vscode。宇宙最强编辑器,就不用我多说了,大家心里都有数。
6、wizard。这是一个可视化开发工具,就好比以前的vb,delphi,大大简化了开发时间,只需要轻轻一拖,各个控件就到了程序界面上,可以说非常智能。
7、cloud_IP。这其实就相当于我们的云端开发了,你可以使用它让手机与电脑互联,前提是在同一个局域网内:
8、settings。系统常规设置,包含一些背景,风格桌面图标的设置。
9、Blockly。中文名:块代码,意思就是将执行过程以拼图的形式展现出来,培养编程思维。
10、term。也是linux终端,但是它跟terminal可不完全一样,因为terminal有很多软键盘模拟电脑,而它则没有,所以它比较适合电脑端编程。
11、GameCent。系统自带的 游戏 ,编程累了偶尔可以放松放松,想的真是周到,让人欲罢不能。
虽然都是比较古老的 游戏 了,但是胜在好玩啊,能适当放松下也很重要。
12、shutdown。这个我不说大家也知道了,一按的话,程序就退出了。这里就不演示了,不然你懂的。
13、Examples。里面有大量的关于AI项目的Python代码,如果你苦于无项目可做,可以去看看,很经典的项目。
14、MusicPlay。音乐播放器,这个也就不多说了,播放音频文件的,编程累了除了打 游戏 排解烦闷的心情再就是它了。
15、Jupyter。准确点说应该是Jupyter notebook,它是做数据分析的一个极为强大的工具,启动速度快所见即所得。注意,要进去这个应用需要密码,密码为:admin。
可以看到,一样的画风,简直是太棒了。
16、LFCE4。打开它可以再次启动一个linux系统,也就是我们经常说的虚拟机,而且这个虚拟机是可以进行键盘鼠标操作的,这就是上面云端编程时电脑链接手机给提供的系统。
17、ApkBuild。这个工具可以将你的Python代码转化为apk打包进行发布,是不是很强大。
18、Service。系统服务设置,可以自定义哪些要安装的服务或者启动服务。
怎么样,这款工具是不是相当强大了 ,我用了这款工具后都爱不释手,连电脑上的Python环境都没怎么用了,一直在云端编程。希望大家通过本文能收获一点东西。
【总结】
1、本文主要介绍了AidLearning的安装和基本使用方法,介绍其相关的组件及其功能。
2、AidLearning是一个不需要root便可以运行linux图形或者console端的apk,它内置Python环境,而且还自带Jupyter notebook 以及各种特色的东西,感兴趣的小伙伴可以下载使用它,希望对大家的学习有帮助噢!
㈢ 学会Python之后更适合做哪方面的工作
下面我们来说一下Python具体的工作岗位以及其岗位要求:
Python后台开发工程师:主要是负责搭建和改进平台产品的后台,并与前端开发工程师相互配合完成整体产品的开发工作。要求工程师具备至少一门Python Web开发框架(Tornado、Django、Flask等),了解并熟悉MySQL/Redis/MongoDB。还要熟悉分布式、微服务、高性能Web服务的开发。
Python爬虫开发工程师:爬虫开发工程师并非我们预想的那样,只是负责为公司爬取相对应的数据内容。爬虫开发工程师主要负责对传统网页、SNS及微博等各种网站信息高效采集与正确解析,然后对用户数据进行整理分析,参与建模的构建,总结分析不同网站、网页的结构特点及规律,负责爬虫架构设计和研发,参与爬虫核心算法和策略优化研究。需要开发工程师熟悉了解robot规则、selenium、mitmproxy、pymouse等内容。当然作为爬虫开发工程师一定要有一定的职业情况,所有工作都需要在合理合法的需求下进行。
Python全栈开发工程师:是指可以使用Python相关工具,独立完成网站开发,称之为全栈开发。全栈开发工程师需要掌握非常多的技能,包括:项目管理、前后端开发、界面设计、产品设计、数据库开发、多端产品等等。
自动化运维工程师:是在基本的运维工作的基础上,实现运维工作的自动化,并且对自动化程序进行优化提升。需要从业者在掌握基本的运营工作的前提下,掌握Python中的IPy、Ansible、Saltstack等常用模块。
自动化测试工程师:首要要完成测试的基本工作,包括测试计划、测试用例、黑盒测试、性能测试等等。其次要是完成产品的自动化测试的部署以及维护工作,并且不断尝试新的方法,新的工具,以提高测试的效率。需要掌握Python以及selenium相关的技能。
数据分析师:指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。需要从业者了解行业相关业务知识、相关管理工作、掌握足够的数据分析方法、了解数据分析工具使用、能够完成数据分析建模等,工作内容偏重于分析,同样也要掌握一定的开发能力,例如R语言和Python语言。
数据分析开发工程师:根据数据分析师的建模完成数据相关的开发工作,搭建仓库、完成数据存储、数据处理、计算处理以及报表开发等工作。需要从业者熟练应用数据库、数据建模开发、Python相关数据科学知识等技能。
人工智能开发工程师:根据企业人工智能AI相关的开发需求,完成相应产品或者功能开发。需要从业者掌握充分的数据理论基础、Python开发基础、机器学习理论与实践、深度学习理论与实践、自然语言处理等一系列相关的开发技能。
Python游戏开发工程师:主要负责游戏服务端的逻辑开发。需要从业者掌握Python各种性能优化方法、soket网络编程知识、运维相关基础知识、以及Python相关的游戏开发库与框架。此外还可以将Python开发相关工作按照岗位晋升分为初级Python开发工程师、中级Python开发工程师、高级Python开发工程师、项目经理、架构师、CTO等。主要是根据从业者工作年限,在某个就业方向的工作经验以及解决问题的能力进行定位。
无论是哪个就业方向,扎实的学习好Python相关知识是重中之重,在互联网行业,无论是大厂还是创业创新的公司,招聘人才的最核心要求是技术能力,只有自己的能力和岗位匹配的时候,才能获得更多的工作机会。
㈣ 为什么说 virtualenv,fabric 和 pip 是 pythoneer 的三大神器
打开命令行(CMD),输入python,如果出现下图则表示安装成功了
如果显示错误的话,请把Python运行目录添加到 计算机>属性>高级系统设置>环境变量>Path中
从pip,完成之后,解压到一个文件夹,用CMD控制台进入解压目录,输入:python
setup.py install,安装好后,把这个目录添加到Path变量中> C:\Python34\Scripts;(python
默认安装的话就是这个路径)
直接在CMD下输入: pip,就会显示如下图
现在pip成功安装了,我们开始安装 virtualenv,直接在CMD输入:pip install virtualenv,由于我已经安装过了,所以显示报错了。
安装成功后进入到 C:\Python34\Scripts目录下,输入命令:virtualven venv
创建虚拟Python环境的文件夹
创建成功后cd进入刚才创建的文件夹,在python安装目录中会多出一个文件夹venv,去看看是不是 =.= ,然后输入:Scripts\activate ,前面多了个(venv)符号表示进入了这个虚拟环境中了,你可以随便怎么搞了。
退出环境:deactivate 回车就好(在python中,要退出python才可以退出虚拟环境)
㈤ 强烈推荐一款Python可视化神器!强烈必备!
Plotly Express 是一个新的高级 Python 可视化库:它是 Plotly.py 的高级封装,它为复杂的图表提供了一个简单的语法。
受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,您就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线。 它带有数据集、颜色面板和主题,就像 Plotly.py 一样。
Plotly Express 完全免费:凭借其宽松的开源 MIT 许可证,您可以随意使用它(是的,甚至在商业产品中!)。
最重要的是,Plotly Express 与 Plotly 生态系统的其他部分完全兼容:在您的 Dash 应用程序中使用它,使用 Orca 将您的数据导出为几乎任何文件格式,或使用JupyterLab 图表编辑器在 GUI 中编辑它们!
用 pip install plotly_express 命令可以安装 Plotly Express。
一旦导入Plotly Express(通常是 px ),大多数绘图只需要一个函数调用,接受一个整洁的Pandas dataframe,并简单描述你想要制作的图。 如果你想要一个基本的散点图,它只是 px.scatter(data,x =“column_name”,y =“column_name”)。
以下是内置的 Gapminder 数据集的示例,显示2007年按国家/地区的人均预期寿命和人均GDP 之间的趋势:
如果你想通过大陆区分它们,你可以使用 color 参数为你的点着色,由 px 负责设置默认颜色,设置图例等:
这里的每一点都是一个国家,所以也许我们想要按国家人口来衡量这些点...... 没问题:这里也有一个参数来设置,它被称为 size:
如果你好奇哪个国家对应哪个点? 可以添加一个 hover_name ,您可以轻松识别任何一点:只需将鼠标放在您感兴趣的点上即可! 事实上,即使没有 hover_name ,整个图表也是互动的:
也可以通过 facet_col =”continent“ 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰:
也许你不仅仅对 2007年 感兴趣,而且你想看看这张图表是如何随着时间的推移而演变的。 可以通过设置 animation_frame=“year” (以及 animation_group =“country” 来标识哪些圆与控制条中的年份匹配)来设置动画。
在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。 我们可以提供更漂亮的“标签” (labels),可以在整个图表、图例、标题轴和悬停(hovers)中应用。 我们还可以手动设置边界,以便动画在整个过程中看起来更棒:
因为这是地理数据,我们也可以将其表示为动画地图,因此这清楚地表明 Plotly Express 不仅仅可以绘制散点图(不过这个数据集缺少前苏联的数据)。
事实上,Plotly Express 支持三维散点图、三维线形图、极坐标和地图上三元坐标以及二维坐标。 条形图(Bar)有二维笛卡尔和极坐标风格。
进行可视化时,您可以使用单变量设置中的直方图(histograms)和箱形图(box)或小提琴图(violin plots),或双变量分布的密度等高线图(density contours)。 大多数二维笛卡尔图接受连续或分类数据,并自动处理日期/时间数据。 可以查看我们的图库 (ref-3) 来了解每个图表的例子。
数据 探索 的主要部分是理解数据集中值的分布,以及这些分布如何相互关联。 Plotly Express 有许多功能来处理这些任务。
使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布:
直方图:
箱形图:
小提琴图:
还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。 Plotly Express 甚至可以帮助你在悬停框中添加线条公式和R²值! 它使用 statsmodels 进行普通最小二乘(OLS)回归或局部加权散点图平滑(LOWESS)。
在上面的一些图中你会注意到一些不错的色标。 在 Plotly Express 中, px.colors 模块包含许多有用的色标和序列:定性的、序列型的、离散的、循环的以及所有您喜欢的开源包:ColorBrewer、cmocean 和 Carto 。 我们还提供了一些功能来制作可浏览的样本供您欣赏(ref-3):
定性的颜色序列:
众多内置顺序色标中的一部分:
我们特别为我们的交互式多维图表感到自豪,例如散点图矩阵(SPLOMS)、平行坐标和我们称之为并行类别的并行集。 通过这些,您可以在单个图中可视化整个数据集以进行数据 探索 。 在你的Jupyter 笔记本中查看这些单行及其启用的交互:
散点图矩阵(SPLOM)允许您可视化多个链接的散点图:数据集中的每个变量与其他变量的关系。 数据集中的每一行都显示为每个图中的一个点。 你可以进行缩放、平移或选择操作,你会发现所有图都链接在一起!
平行坐标允许您同时显示3个以上的连续变量。 dataframe 中的每一行都是一行。 您可以拖动尺寸以重新排序它们并选择值范围之间的交叉点。
并行类别是并行坐标的分类模拟:使用它们可视化数据集中多组类别之间的关系。
Plotly Express 之于 Plotly.py 类似 Seaborn 之于 matplotlib:Plotly Express 是一个高级封装库,允许您快速创建图表,然后使用底层 API 和生态系统的强大功能进行修改。 对于Plotly 生态系统,这意味着一旦您使用 Plotly Express 创建了一个图形,您就可以使用Themes,使用 FigureWidgets 进行命令性编辑,使用 Orca 将其导出为几乎任何文件格式,或者在我们的 GUI JupyterLab 图表编辑器中编辑它 。
主题(Themes)允许您控制图形范围的设置,如边距、字体、背景颜色、刻度定位等。 您可以使用模板参数应用任何命名的主题或主题对象:
有三个内置的 Plotly 主题可以使用, 分别是 plotly, plotlywhite 和 plotlydark。
px 输出继承自 Plotly.py 的 Figure 类 ExpressFigure 的对象,这意味着你可以使用任何 Figure 的访问器和方法来改变 px生成的绘图。 例如,您可以将 .update() 调用链接到 px 调用以更改图例设置并添加注释。 .update() 现在返回修改后的数字,所以你仍然可以在一个很长的 Python 语句中执行此操作:
在这里,在使用 Plotly Express 生成原始图形之后,我们使用 Plotly.py 的 API 来更改一些图例设置并添加注释。
Dash 是 Plotly 的开源框架,用于构建具有 Plotly.py 图表的分析应用程序和仪表板。Plotly Express 产生的对象与 Dash 100%兼容,只需将它们直接传递到 dash_core_components.Graph,如下所示: dcc.Graph(figure = px.scatter(...))。 这是一个非常简单的 50行 Dash 应用程序的示例,它使用 px 生成其中的图表:
这个 50 行的 Dash 应用程序使用 Plotly Express 生成用于浏览数据集的 UI 。
可视化数据有很多原因:有时您想要提供一些想法或结果,并且您希望对图表的每个方面施加很多控制,有时您希望快速查看两个变量之间的关系。 这是交互与 探索 的范畴。
Plotly.py 已经发展成为一个非常强大的可视化交互工具:它可以让你控制图形的几乎每个方面,从图例的位置到刻度的长度。 不幸的是,这种控制的代价是冗长的:有时可能需要多行 Python 代码才能用 Plotly.py 生成图表。
我们使用 Plotly Express 的主要目标是使 Plotly.py 更容易用于 探索 和快速迭代。
我们想要构建一个库,它做出了不同的权衡:在可视化过程的早期牺牲一些控制措施来换取一个不那么详细的 API,允许你在一行 Python 代码中制作各种各样的图表。 然而,正如我们上面所示,该控件并没有消失:你仍然可以使用底层的 Plotly.py 的 API 来调整和优化用 Plotly Express 制作的图表。
支持这种简洁 API 的主要设计决策之一是所有 Plotly Express 的函数都接受“整洁”的 dataframe 作为输入。 每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让您直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column 甚至是 动画帧到数据框(dataframe)中的列。 当您键入 px.scatter(data,x ='col1',y='col2') 时,Plotly Express 会为数据框中的每一行创建一个小符号标记 - 这就是 px.scatter 的作用 - 并将 “col1” 映射到 x 位置(类似于 y 位置)。 这种方法的强大之处在于它以相同的方式处理所有可视化变量:您可以将数据框列映射到颜色,然后通过更改参数来改变您的想法并将其映射到大小或进行行分面(facet-row)。
接受整个整洁的 dataframe 的列名作为输入(而不是原始的 numpy 向量)也允许 px 为你节省大量的时间,因为它知道列的名称,它可以生成所有的 Plotly.py 配置用于标记图例、轴、悬停框、构面甚至动画帧。 但是,如上所述,如果你的 dataframe 的列被笨拙地命名,你可以告诉 px 用每个函数的 labels 参数替换更好的。
仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:您整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等,所有这些都不需要重塑您的数据!
在 API 级别,我们在 px 中投入了大量的工作,以确保所有参数都被命名,以便在键入时最大限度地发现:所有 scatter -类似的函数都以 scatter 开头(例如 scatter_polar, scatter_ternary)所以你可以通过自动补全来发现它们。 我们选择拆分这些不同的散点图函数,因此每个散点图函数都会接受一组定制的关键字参数,特别是它们的坐标系。 也就是说,共享坐标系的函数集(例如 scatter, line & bar,或 scatter_polar, line_polar 和 bar_polar )也有相同的参数,以最大限度地方便学习。 我们还花了很多精力来提出简短而富有表现力的名称,这些名称很好地映射到底层的 Plotly.py 属性,以便于在工作流程中稍后调整到交互的图表中。
最后,Plotly Express 作为一个新的 Python 可视化库,在 Plotly 生态系统下,将会迅速发展。所以不要犹豫,立即开始使用 Plotly Express 吧!