当前位置:首页 » 编程语言 » java分区

java分区

发布时间: 2023-06-11 03:04:34

‘壹’ java快速排序简单代码

.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px} 排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是快速排序算法:

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n?),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

快速排序的最坏运行情况是 O(n?),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。
1. 算法步骤
从数列中挑出一个元素,称为 "基准"(pivot);

重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
2. 动图演示
代码实现 JavaScript 实例 function quickSort ( arr , left , right ) {
    var len = arr. length ,
        partitionIndex ,
        left = typeof left != 'number' ? 0 : left ,
        right = typeof right != 'number' ? len - 1 : right ;

    if ( left

‘贰’ 哪位能描述一下 java 中内存的分区情况和各类变量在内存中的存贮情况。

Java内存分配与管理是Java的核心技术之一,一般Java在内存分配时会涉及到以下区域:

◆寄存器:我们在程序中无法控制

◆栈:存放基本类型的数据和对象的引用,但对象本身不存放在栈中,而是存放在堆中

◆堆:存放用new产生的数据

◆静态域:存放在对象中用static定义的静态成员

◆常量池:存放常量

◆非RAM存储:硬盘等永久存储空间

Java内存分配中的栈

在函数中定义的一些基本类型的变量数据和对象的引用变量都在函数的栈内存中分配。

当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当该变量退出该作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。

Java内存分配中的堆

堆内存用来存放由new创建的对象和数组。在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。

在堆中产生了一个数组或对象后,还可以在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。引用变量就相当于是为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。引用变量就相当于是为数组或者对象起的一个名称。

引用变量是普通的变量,定义时在栈中分配,引用变量在程序运行到其作用域之外后被释放。而数组和对象本身在堆中分配,即使程序运行到使用new产生数组或者对象的语句所在的代码块之外,数组和对象本身占据的内存不会被释放,数组和对象在没有引用变量指向它的时候,才变为垃圾,不能在被使用,但仍然占据内存空间不放,在随后的一个不确定的时间被垃圾回收器收走(释放掉)。这也是Java比较占内存的原因。

实际上,栈中的变量指向堆内存中的变量,这就是Java中的指针!

常量池(constantpool)

常量池指的是在编译期被确定,并被保存在已编译的.class文件中的一些数据。除了包含代码中所定义的各种基本类型(如int、long等等)和对象型(如String及数组)的常量值(final)还包含一些以文本形式出现的符号引用,比如:

◆类和接口的全限定名;

◆字段的名称和描述符;

◆方法和名称和描述符。

虚拟机必须为每个被装载的类型维护一个常量池。常量池就是该类型所用到常量的一个有序集和,包括直接常量(string,integer和floatingpoint常量)和对其他类型,字段和方法的符号引用。

对于String常量,它的值是在常量池中的。而JVM中的常量池在内存当中是以表的形式存在的,对于String类型,有一张固定长度的CONSTANT_String_info表用来存储文字字符串值,注意:该表只存储文字字符串值,不存储符号引用。说到这里,对常量池中的字符串值的存储位置应该有一个比较明了的理解了。

在程序执行的时候,常量池会储存在MethodArea,而不是堆中。

堆与栈

Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。

栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。栈中主要存放一些基本类型的变量数据(int,short,long,byte,float,double,boolean,char)和对象句柄(引用)。

栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义:

1. inta=3;

2. intb=3;

编译器先处理inta=3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理intb=3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。

这时,如果再令a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b的值。

要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b,它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。

String是一个特殊的包装类数据。可以用:

Stringstr=newString("abc");

Stringstr="abc";

两种的形式来创建,第一种是用new()来新建对象的,它会在存放于堆中。每调用一次就会创建一个新的对象。而第二种是先在栈中创建一个对String类的对象引用变量str,然后通过符号引用去字符串常量池里找有没有"abc",如果没有,则将"abc"存放进字符串常量池,并令str指向”abc”,如果已经有”abc”则直接令str指向“abc”。

比较类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==,下面用例子说明上面的理论。

1.Stringstr1="abc";

2.Stringstr2="abc";

3.System.out.println(str1==str2);//true

可以看出str1和str2是指向同一个对象的。

1.Stringstr1=newString("abc");

2.Stringstr2=newString("abc");

3.System.out.println(str1==str2);//false

用new的方式是生成不同的对象。每一次生成一个。

因此用第二种方式创建多个”abc”字符串,在内存中其实只存在一个对象而已.这种写法有利与节省内存空间.同时它可以在一定程度上提高程序的运行速度,因为JVM会自动根据栈中数据的实际情况来决定是否有必要创建新对象。而对于Stringstr=newString("abc");的代码,则一概在堆中创建新对象,而不管其字符串值是否相等,是否有必要创建新对象,从而加重了程序的负担。

另一方面,要注意:我们在使用诸如Stringstr="abc";的格式定义类时,总是想当然地认为,创建了String类的对象str。担心陷阱!对象可能并没有被创建!而可能只是指向一个先前已经创建的对象。只有通过new()方法才能保证每次都创建一个新的对象。

由于String类的immutable性质,当String变量需要经常变换其值时,应该考虑使用StringBuffer类,以提高程序效率。

1.首先String不属于8种基本数据类型,String是一个对象。因为对象的默认值是null,所以String的默认值也是null;但它又是一种特殊的对象,有其它对象没有的一些特性。

2.newString()和newString(”")都是申明一个新的空字符串,是空串不是null;

3.Stringstr=”kvill”;Stringstr=newString(”kvill”)的区别

示例:

1.Strings0="kvill";

2.Strings1="kvill";

3.Strings2="kv"+"ill";

4.System.out.println(s0==s1);

5.System.out.println(s0==s2);

结果为:

true

true

首先,我们要知结果为道Java会确保一个字符串常量只有一个拷贝。

因为例子中的s0和s1中的”kvill”都是字符串常量,它们在编译期就被确定了,所以s0==s1为true;而”kv”和”ill”也都是字符串常量,当一个字符串由多个字符串常量连接而成时,它自己肯定也是字符串常量,所以s2也同样在编译期就被解析为一个字符串常量,所以s2也是常量池中”kvill”的一个引用。所以我们得出s0==s1==s2;用newString()创建的字符串不是常量,不能在编译期就确定,所以newString()创建的字符串不放入常量池中,它们有自己的地址空间。

示例:

6.Strings0="kvill";

7.Strings1=newString("kvill");

8.Strings2="kv"+newString("ill");

9.System.out.println(s0==s1);

10.System.out.println(s0==s2);

11.System.out.println(s1==s2);

结果为:

false

false

false

例2中s0还是常量池中"kvill”的应用,s1因为无法在编译期确定,所以是运行时创建的新对象”kvill”的引用,s2因为有后半部分newString(”ill”)所以也无法在编译期确定,所以也是一个新创建对象”kvill”的应用;明白了这些也就知道为何得出此结果了。

4.String.intern():

再补充介绍一点:存在于.class文件中的常量池,在运行期被JVM装载,并且可以扩充。String的intern()方法就是扩充常量池的一个方法;当一个String实例str调用intern()方法时,Java查找常量池中是否有相同Unicode的字符串常量,如果有,则返回其的引用,如果没有,则在常量池中增加一个Unicode等于str的字符串并返回它的引用;看示例就清楚了

示例:

1.Strings0="kvill";

2.Strings1=newString("kvill");

3.Strings2=newString("kvill");

4.System.out.println(s0==s1);

5.System.out.println("**********");

6.s1.intern();

7.s2=s2.intern();//把常量池中"kvill"的引用赋给s2

8.System.out.println(s0==s1);

9.System.out.println(s0==s1.intern());

10.System.out.println(s0==s2);

结果为:

false

false//虽然执行了s1.intern(),但它的返回值没有赋给s1

true//说明s1.intern()返回的是常量池中"kvill"的引用

true

最后我再破除一个错误的理解:有人说,“使用String.intern()方法则可以将一个String类的保存到一个全局String表中,如果具有相同值的Unicode字符串已经在这个表中,那么该方法返回表中已有字符串的地址,如果在表中没有相同值的字符串,则将自己的地址注册到表中”如果我把他说的这个全局的String表理解为常量池的话,他的最后一句话,”如果在表中没有相同值的字符串,则将自己的地址注册到表中”是错的:

示例:

1.Strings1=newString("kvill");

2.Strings2=s1.intern();

3.System.out.println(s1==s1.intern());

4.System.out.println(s1+""+s2);

5.System.out.println(s2==s1.intern());

结果:

1.false

2.kvillkvill

3.true

在这个类中我们没有声名一个”kvill”常量,所以常量池中一开始是没有”kvill”的,当我们调用s1.intern()后就在常量池中新添加了一个”kvill”常量,原来的不在常量池中的”kvill”仍然存在,也就不是“将自己的地址注册到常量池中”了。

s1==s1.intern()为false说明原来的”kvill”仍然存在;s2现在为常量池中”kvill”的地址,所以有s2==s1.intern()为true。

5.关于equals()和==:

这个对于String简单来说就是比较两字符串的Unicode序列是否相当,如果相等返回true;而==是比较两字符串的地址是否相同,也就是是否是同一个字符串的引用。

6.关于String是不可变的

这一说又要说很多,大家只要知道String的实例一旦生成就不会再改变了,比如说:Stringstr=”kv”+”ill”+”“+”ans”;就是有4个字符串常量,首先”kv”和”ill”生成了”kvill”存在内存中,然后”kvill”又和””生成“kvill“存在内存中,最后又和生成了”kvillans”;并把这个字符串的地址赋给了str,就是因为String的”不可变”产生了很多临时变量,这也就是为什么建议用StringBuffer的原因了,因为StringBuffer是可改变的。

下面是一些String相关的常见问题:

String中的final用法和理解

finalStringBuffera=newStringBuffer("111");

finalStringBufferb=newStringBuffer("222");

a=b;//此句编译不通过

finalStringBuffera=newStringBuffer("111");

a.append("222");//编译通过

可见,final只对引用的"值"(即内存地址)有效,它迫使引用只能指向初始指向的那个对象,改变它的指向会导致编译期错误。至于它所指向的对象的变化,final是不负责的。

String常量池问题的几个例子

下面是几个常见例子的比较分析和理解:

Stringa="a1";

Stringb="a"+1;

System.out.println((a==b));//result=true

Stringa="atrue";

Stringb="a"+"true";

System.out.println((a==b));//result=true

Stringa="a3.4";

Stringb="a"+3.4;

System.out.println((a==b));//result=true

分析:JVM对于字符串常量的"+"号连接,将程序编译期,JVM就将常量字符串的"+"连接优化为连接后的值,拿"a"+1来说,经编译器优化后在class中就已经是a1。在编译期其字符串常量的值就确定下来,故上面程序最终的结果都为true。

Stringa="ab";

Stringbb="b";

Stringb="a"+bb;

System.out.println((a==b));//result=false

分析:JVM对于字符串引用,由于在字符串的"+"连接中,有字符串引用存在,而引用的值在程序编译期是无法确定的,即"a"+bb无法被编译器优化,只有在程序运行期来动态分配并将连接后的新地址赋给b。所以上面程序的结果也就为false。

Stringa="ab";

finalStringbb="b";

Stringb="a"+bb;

System.out.println((a==b));//result=true

分析:和[3]中唯一不同的是bb字符串加了final修饰,对于final修饰的变量,它在编译时被解析为常量值的一个本地拷贝存储到自己的常量池中或嵌入到它的字节码流中。所以此时的"a"+bb和"a"+"b"效果是一样的。故上面程序的结果为true。

Stringa="ab";

finalStringbb=getBB();

Stringb="a"+bb;

System.out.println((a==b));//result=false

privatestaticStringgetBB(){

return"b";

}

分析:JVM对于字符串引用bb,它的值在编译期无法确定,只有在程序运行期调用方法后,将方法的返回值和"a"来动态连接并分配地址为b,故上面程序的结果为false。

通过上面4个例子可以得出得知:

Strings="a"+"b"+"c";

就等价于Strings="abc";

Stringa="a";

Stringb="b";

Stringc="c";

Strings=a+b+c;

这个就不一样了,最终结果等于:

1.StringBuffertemp=newStringBuffer();

2.temp.append(a).append(b).append(c);

3.Strings=temp.toString();

由上面的分析结果,可就不难推断出String采用连接运算符(+)效率低下原因分析,形如这样的代码:

publicclassTest{

publicstaticvoidmain(Stringargs[]){

Strings=null;

for(inti=0;i<100;i++){

s+="a";

}

}

}

每做一次+就产生个StringBuilder对象,然后append后就扔掉。下次循环再到达时重新产生个StringBuilder对象,然后append字符串,如此循环直至结束。如果我们直接采用StringBuilder对象进行append的话,我们可以节省N-1次创建和销毁对象的时间。所以对于在循环中要进行字符串连接的应用,一般都是用StringBuffer或StringBulider对象来进行append操作。

String对象的intern方法理解和分析:

1.publicclassTest4{

2.privatestaticStringa="ab";

3.publicstaticvoidmain(String[]args){

4.Strings1="a";

5.Strings2="b";

6.Strings=s1+s2;

7.System.out.println(s==a);//false

8.System.out.println(s.intern()==a);//true

9.}

10.}

这里用到Java里面是一个常量池的问题。对于s1+s2操作,其实是在堆里面重新创建了一个新的对象,s保存的是这个新对象在堆空间的的内容,所以s与a的值是不相等的。而当调用s.intern()方法,却可以返回s在常量池中的地址值,因为a的值存储在常量池中,故s.intern和a的值相等。

总结

栈中用来存放一些原始数据类型的局部变量数据和对象的引用(String,数组.对象等等)但不存放对象内容

堆中存放使用new关键字创建的对象.

字符串是一个特殊包装类,其引用是存放在栈里的,而对象内容必须根据创建方式不同定(常量池和堆).有的是编译期就已经创建好,存放在字符串常量池中,而有的是运行时才被创建.使用new关键字,存放在堆中。

‘叁’ Java分布式系统处理分布式事务有哪些经典解决方

当我们在生产线上用一台服务器来提供数据服务的时候,我会遇到如下的两个问题:

1)一台服务器的性能不足以提供足够的能力服务于所有的网络请求。

2)我们总是害怕我们的这台服务器停机,造成服务不可用或是数据丢失。

于是我们不得不对我们的服务器进行扩展,加入更多的机器来分担性能上的问题,以及来解决单点故障问题。 通常,我们会通过两种手段来扩展我们的数据服务:

1)数据分区:就是把数据分块放在不同的服务器上(如:uid % 16,一致性哈希等)。

2)数据镜像:让所有的服务器都有相同的数据,提供相当的服务。

对于第一种情况,我们无法解决数据丢失的问题,单台服务器出问题时,会有部分数据丢失。所以,数据服务的高可用性只能通过第二种方法来完成——数据的冗余存储(一般工业界认为比较安全的备份数应该是3份,如:Hadoop和Dynamo)。 但是,加入更多的机器,会让我们的数据服务变得很复杂,尤其是跨服务器的事务处理,也就是跨服务器的数据一致性。这个是一个很难的问题。 让我们用最经典的Use Case:“A帐号向B帐号汇钱”来说明一下,熟悉RDBMS事务的都知道从帐号A到帐号B需要6个操作:

  • 从A帐号中把余额读出来。

  • 对A帐号做减法操作。

  • 把结果写回A帐号中。

  • 从B帐号中把余额读出来。

  • 对B帐号做加法操作。

  • 把结果写回B帐号中。

  • 为了数据的一致性,这6件事,要么都成功做完,要么都不成功,而且这个操作的过程中,对A、B帐号的其它访问必需锁死,所谓锁死就是要排除其它的读写操作,不然会有脏数据的问题,这就是事务。那么,我们在加入了更多的机器后,这个事情会变得复杂起来:

    1)在数据分区的方案中:如果A帐号和B帐号的数据不在同一台服务器上怎么办?我们需要一个跨机器的事务处理。也就是说,如果A的扣钱成功了,但B的加钱不成功,我们还要把A的操作给回滚回去。这在跨机器的情况下,就变得比较复杂了。

    2)在数据镜像的方案中:A帐号和B帐号间的汇款是可以在一台机器上完成的,但是别忘了我们有多台机器存在A帐号和B帐号的副本。如果对A帐号的汇钱有两个并发操作(要汇给B和C),这两个操作发生在不同的两台服务器上怎么办?也就是说,在数据镜像中,在不同的服务器上对同一个数据的写操作怎么保证其一致性,保证数据不冲突?

    同时,我们还要考虑性能的因素,如果不考虑性能的话,事务得到保证并不困难,系统慢一点就行了。除了考虑性能外,我们还要考虑可用性,也就是说,一台机器没了,数据不丢失,服务可由别的机器继续提供。 于是,我们需要重点考虑下面的这么几个情况:

    1)容灾:数据不丢、节点的Failover

    2)数据的一致性:事务处理

    3)性能:吞吐量 、 响应时间

    前面说过,要解决数据不丢,只能通过数据冗余的方法,就算是数据分区,每个区也需要进行数据冗余处理。这就是数据副本:当出现某个节点的数据丢失时可以从副本读到,数据副本是分布式系统解决数据丢失异常的唯一手段。所以,在这篇文章中,简单起见,我们只讨论在数据冗余情况下考虑数据的一致性和性能的问题。简单说来:

    1)要想让数据有高可用性,就得写多份数据。

    2)写多份的问题会导致数据一致性的问题。

    3)数据一致性的问题又会引发性能问题

    这就是软件开发,按下了葫芦起了瓢。

    一致性模型

    说起数据一致性来说,简单说有三种类型(当然,如果细分的话,还有很多一致性模型,如:顺序一致性,FIFO一致性,会话一致性,单读一致性,单写一致性,但为了本文的简单易读,我只说下面三种):

    1)Weak 弱一致性:当你写入一个新值后,读操作在数据副本上可能读出来,也可能读不出来。比如:某些cache系统,网络游戏其它玩家的数据和你没什么关系,VOIP这样的系统,或是网络搜索引擎(呵呵)。

    2)Eventually 最终一致性:当你写入一个新值后,有可能读不出来,但在某个时间窗口之后保证最终能读出来。比如:DNS,电子邮件、Amazon S3,Google搜索引擎这样的系统。

    3)Strong 强一致性:新的数据一旦写入,在任意副本任意时刻都能读到新值。比如:文件系统,RDBMS,Azure Table都是强一致性的。

    从这三种一致型的模型上来说,我们可以看到,Weak和Eventually一般来说是异步冗余的,而Strong一般来说是同步冗余的,异步的通常意味着更好的性能,但也意味着更复杂的状态控制。同步意味着简单,但也意味着性能下降。 好,让我们由浅入深,一步一步地来看有哪些技术:

    Master-Slave

    首先是Master-Slave结构,对于这种加构,Slave一般是Master的备份。在这样的系统中,一般是如下设计的:

    1)读写请求都由Master负责。

    2)写请求写到Master上后,由Master同步到Slave上。

    从Master同步到Slave上,你可以使用异步,也可以使用同步,可以使用Master来push,也可以使用Slave来pull。 通常来说是Slave来周期性的pull,所以,是最终一致性。这个设计的问题是,如果Master在pull周期内垮掉了,那么会导致这个时间片内的数据丢失。如果你不想让数据丢掉,Slave只能成为Read-Only的方式等Master恢复。

    当然,如果你可以容忍数据丢掉的话,你可以马上让Slave代替Master工作(对于只负责计算的节点来说,没有数据一致性和数据丢失的问题,Master-Slave的方式就可以解决单点问题了) 当然,Master Slave也可以是强一致性的, 比如:当我们写Master的时候,Master负责先写自己,等成功后,再写Slave,两者都成功后返回成功,整个过程是同步的,如果写Slave失败了,那么两种方法,一种是标记Slave不可用报错并继续服务(等Slave恢复后同步Master的数据,可以有多个Slave,这样少一个,还有备份,就像前面说的写三份那样),另一种是回滚自己并返回写失败。(注:一般不先写Slave,因为如果写Master自己失败后,还要回滚Slave,此时如果回滚Slave失败,就得手工订正数据了)你可以看到,如果Master-Slave需要做成强一致性有多复杂。

    Master-Master

    Master-Master,又叫Multi-master,是指一个系统存在两个或多个Master,每个Master都提供read-write服务。这个模型是Master-Slave的加强版,数据间同步一般是通过Master间的异步完成,所以是最终一致性。 Master-Master的好处是,一台Master挂了,别的Master可以正常做读写服务,他和Master-Slave一样,当数据没有被复制到别的Master上时,数据会丢失。很多数据库都支持Master-Master的Replication的机制。

    另外,如果多个Master对同一个数据进行修改的时候,这个模型的恶梦就出现了——对数据间的冲突合并,这并不是一件容易的事情。看看Dynamo的Vector Clock的设计(记录数据的版本号和修改者)就知道这个事并不那么简单,而且Dynamo对数据冲突这个事是交给用户自己搞的。就像我们的SVN源码冲突一样,对于同一行代码的冲突,只能交给开发者自己来处理。(在本文后后面会讨论一下Dynamo的Vector Clock)

    Two/Three Phase Commit

    这个协议的缩写又叫2PC,中文叫两阶段提交。在分布式系统中,每个节点虽然可以知晓自己的操作时成功或者失败,却无法知道其他节点的操作的成功或失败。当一个事务跨越多个节点时,为了保持事务的ACID特性,需要引入一个作为协调者的组件来统一掌控所有节点(称作参与者)的操作结果并最终指示这些节点是否要把操作结果进行真正的提交(比如将更新后的数据写入磁盘等等)。

‘肆’ java静态变量存储在哪个区

java程序在内存中的存储分配情况:

一、堆区:
1.存储的全部是对象,每个对象都包含一个与之对应的class的信息。(class的目的是得到操作指令)
2.jvm只有一个堆区(heap)被所有线程共享,堆中不存放基本类型和对象引用,只存放对象本身 ujiuye
栈区:
1.每个线程包含一个栈区,栈中只保存基础数据类型的对象和自定义对象的引用(不是对象),对象都存放在堆区中
2.每个栈中的数据(原始类型和对象引用)都是私有的,其他栈不能访问。
3.栈分为3个部分:基本类型变量区、执行环境上下文、操作指令区(存放操作指令)。 ujiuye
方法区:
1.又叫静态区,跟堆一样,被所有的线程共享。方法区包含所有的class和static变量。
2.方法区中包含的都是在整个程序中永远唯一的元素,如class,static变量。

二、内存分区
而内存分为四个区:stack segment,heap segment,data segment,code segment;
stack 区存放函数参数和局部变量;heap 区存放对象;data 区存放static 的变量或者字符串常量; code 区存放类中的方法;
因此,静态变量是存放在data区的 !

热点内容
制定编程 发布:2025-02-13 19:11:39 浏览:58
微商相册安卓与苹果机哪个方便 发布:2025-02-13 19:10:02 浏览:6
优酷视频缓存设置 发布:2025-02-13 19:04:03 浏览:156
如何识别网络配置 发布:2025-02-13 19:04:02 浏览:300
android签名漏洞 发布:2025-02-13 18:59:47 浏览:255
解压高达 发布:2025-02-13 18:58:56 浏览:518
苹果怎么对备忘录加密码 发布:2025-02-13 18:44:19 浏览:72
php房产网 发布:2025-02-13 18:18:06 浏览:86
源码资源吧 发布:2025-02-13 18:14:39 浏览:80
java培训价钱 发布:2025-02-13 17:59:33 浏览:975