python网络爬虫pdf
‘壹’ 从python基础到爬虫的书有什么值得推荐
前两篇爬虫12(点击头像看历史)
资料仅供学习
方式一
直接爬取网站
http://chanyouji.com/(网站会拦截IP,第二篇就用到了)
1~打开网页,里面有很多人分享的游记,我们就进行游记爬取2~点开其中一篇游记,看到链接地址形式http://chanyouji.com/trips/,这个时候,思考,这个数字代表的含义?会不会是游记在数据库的ID,如果是的话那我们换个数字会不会得到别的游记,试一下访问http://chanyouji.com/trips/,确实看到了不一样的游记。自己试试
![](http://www.ultimate-communications.com/images/loading.jpg)
学习过程中遇到什么问题或者想获取学习资源的话,欢迎加入学习交流群
,我们一起学Python!
每天晚上都有大神与你高清视频免费分享交流行业最新动态凑热闹就不要加了群名额有限!
‘贰’ python教程哪里下载
一、Python入门到进阶的 廖雪峰 Python & JS & Git 教程PDF版 链接:‘叁’ 如何通过网络爬虫获取网站数据
这里以python为例,简单介绍一下如何通过python网络爬虫获取网站数据,主要分为静态网页数据的爬埋山差取和动态网页数据的爬取,实验环境win10+python3.6+pycharm5.0,主要内容如下:
静态网页数据
这里的数据都嵌套在网页源码中,所以直接requests网页源码进行解析就行,下面我简单介绍一下,这里以爬取糗事网络上的数据为例:
1.首先,打开原网页,如下,这里假设要爬取的字段包括昵称、内容、好笑数和评论数:
接着查看网页源码,如下,可以看的出来,所有的数据都嵌套在网页中:
2.然后针对以上网页结构,我们就可以直接编写爬虫代码,解析网页并提取出我们需要的数据了,测试代码如下,非常简单,主要用到requests+BeautifulSoup组合,其中requests用于获取网页源码,BeautifulSoup用于解析网页提取数据:
点击运行这个程序,效果如下,已经成功爬取了到我们需要的数据:
动态网页数据
这里的数据都没有在网页源码中(所以直接请求页面是获取不到任何数据的),大部分情况下都是存储在一唯唯个json文件中,只有在网页更新的时候,才会加载数据,下面我简单介绍一下这种方式,这里以爬取人人贷上面的数据为例:
1.首先,打开原网页,如下,这里假设要爬取的数据包括年利率,借款标题,期限,金额和进度:
接着按F12调出开发者工具,依次点击“Network”->“XHR”,F5刷新页面,就可以找打动态加载的json文件,如下,也就是我们需要爬弯皮取的数据:
2.然后就是根据这个json文件编写对应代码解析出我们需要的字段信息,测试代码如下,也非常简单,主要用到requests+json组合,其中requests用于请求json文件,json用于解析json文件提取数据:
点击运行这个程序,效果如下,已经成功爬取到我们需要的数据:
至此,我们就完成了利用python网络爬虫来获取网站数据。总的来说,整个过程非常简单,python内置了许多网络爬虫包和框架(scrapy等),可以快速获取网站数据,非常适合初学者学习和掌握,只要你有一定的爬虫基础,熟悉一下上面的流程和代码,很快就能掌握的,当然,你也可以使用现成的爬虫软件,像八爪鱼、后羿等也都可以,网上也有相关教程和资料,非常丰富,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。
‘肆’ 求《python3 网络爬虫开发实战》第二版 pdf
‘伍’ 开始学Python爬虫相关的视频和文档
视频的话可以找一下中国大学MOOC上搜索,就有python爬虫的相关视频,文档的话其实主要看你是否要用到框架,比如scrapy框架,用到的话就看这个框架的文档即可
‘陆’ 如何解决Python读取PDF内容慢的问题
1,引言
晚上翻看《Python网络数据采集》这本书,看到读取PDF内容的代码,想起来前几天集搜客刚刚发布了一个抓取网页pdf内容的抓取规则
如果PDF文件在你的电脑里,那就把urlopen返回的对象pdfFile替换成普通的open()文件对象。
3,展望
这个实验只是把pdf转换成了文本,但是没有像开头所说的转换成html标签,那么在Python编程环境下是否有这个能力,留待今后探索。
4,集搜客GooSeeker开源代码下载源
1.GooSeeker开源Python网络爬虫GitHub源
5,文档修改历史
2016-05-26:V2.0,增补文字说明
2016-05-29:V2.1,增加第六章:源代码下载源,并更换github源的网址
‘柒’ 《用Python写网络爬虫》pdf下载在线阅读,求百度网盘云资源
《用Python写网络爬虫》([澳]理乍得 劳森)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1libXv5hd9hBDnLiXvf5WzQ
书名:用Python写网络爬虫
作者:[澳]理乍得 劳森
译者:李斌
豆瓣评分:7.2
出版社:人民邮电出版社
出版年份:2016-8-1
页数:157
内容简介:
作为一种便捷地收集网上信息并从中抽取出可用信息的方式,网络爬虫技术变得越来越有用。使用Python这样的简单编程语言,你可以使用少量编程技能就可以爬取复杂的网站。
《用Python写网络爬虫》作为使用Python来爬取网络数据的杰出指南,讲解了从静态页面爬取数据的方法以及使用缓存来管理服务器负载的方法。此外,本书还介绍了如何使用AJAX URL和Firebug扩展来爬取数据,以及有关爬取技术的更多真相,比如使用浏览器渲染、管理cookie、通过提交表单从受验证码保护的复杂网站中抽取数据等。本书使用Scrapy创建了一个高级网络爬虫,并对一些真实的网站进行了爬取。
《用Python写网络爬虫》介绍了如下内容:
通过跟踪链接来爬取网站;
使用lxml从页面中抽取数据;
构建线程爬虫来并行爬取页面;
将下载的内容进行缓存,以降低带宽消耗;
解析依赖于JavaScript的网站;
与表单和会话进行交互;
解决受保护页面的验证码问题;
对AJAX调用进行逆向工程;
使用Scrapy创建高级爬虫。
本书读者对象
本书是为想要构建可靠的数据爬取解决方案的开发人员写作的,本书假定读者具有一定的Python编程经验。当然,具备其他编程语言开发经验的读者也可以阅读本书,并理解书中涉及的概念和原理。
作者简介:
Richard Lawson来自澳大利亚,毕业于墨尔本大学计算机科学专业。毕业后,他创办了一家专注于网络爬虫的公司,为超过50个国家的业务提供远程工作。他精通于世界语,可以使用汉语和韩语对话,并且积极投身于开源软件。他目前在牛津大学攻读研究生学位,并利用业余时间研发自主无人机。
‘捌’ 如何用Python做爬虫
1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?
很简单
import Queue
initial_page = "初始化页"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...
及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。
所以,不要问怎么入门,直接上路就好了:)
‘玖’ 《精通python网络爬虫韦玮》pdf下载在线阅读全文,求百度网盘云资源
《精通python网络爬虫韦玮》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1xxmq5uSWoIkBtVauNuta4g
简介:本书从技术、工具与实战3个维度讲解了Python网络爬虫:
技术维度:详细讲解了Python网络爬虫实现的核心技术,包括网络爬虫的工作原理、如何用urllib库编写网络爬虫、爬虫的异常处理、正则表达式、爬虫中Cookie的使用、爬虫的浏览器伪装技术、定向爬取技术、反爬虫技术,以及如何自己动手编写网络爬虫;
工具维度:以流行的Python网络爬虫框架Scrapy为对象,详细讲解了Scrapy的功能使用、高级技巧、架构设计、实现原理,以及如何通过Scrapy来更便捷、高效地编写网络爬虫;
实战维度:以实战为导向,是本书的主旨,除了完全通过手动编程实现网络爬虫和通过Scrapy框架实现网络爬虫的实战案例以外,本书还有博客爬取、图片爬取、模拟登录等多个综合性的网络爬虫实践案例。
作者在Python领域有非常深厚的积累,不仅精通Python网络爬虫,在Python机器学习、Python数据分析与挖掘、Python Web开发等多个领域都有丰富的实战经验。