当前位置:首页 » 编程语言 » python数据分析工具

python数据分析工具

发布时间: 2023-06-09 09:22:05

python工具有哪些

第一款:最强终端 Upterm
它是一个全平台的终端,可以说是终端里的IDE,有着强大的自动补全功能,之前的名字叫作:BlackWindow。有人跟他说这个名字不利于社区推广,改名叫Upterm之后现在已经17000+Star了。
第二款:交互式解释器 PtPython
一个交互式的Python解释器,支持语法高亮、提示,甚至是VIM和emacs的键入模式。
第三款:包管理必备 Anaconda
强烈推荐:Anaconda。它能帮你安装许多麻烦的东西,包括:Python环境、pip包管理工具、常用的库、配置好环境路径等等。这些小事情小白自己一个个去做的话,容易遇到各种问题,也容易造成挫败感。如果你想用Python搞数据方面的事情,安装它就可以了,它甚至开发了一套JIT的解释器Numba。所以Anaconda有了JIT之后,对线上科学计算效率要求比较高的东西也可以搞定了。
第四款:编辑器 Sublime3
如果你是小白的话,推荐从PyCharm开始上手,但是有时候写一些轻量的小脚本,就会想到轻量级一点的工具。Sublime3很多地方都有了极大的提升,并且用起来比原来还要简单,配合安装Anaconda或CodeIntel插件,可以让Sublime3拥有近乎IDE的体验。
第五款:前端在线编辑器 CodeSandbox
虽然这个不算是真正意义上的Python开发工具,但如果后端工程师想要写前端的话,这个在线编辑器太方便了,节省了后端工程师的生命。不用安装npm的几千个包了,它已经在云端完成了,才让你直接就可以上手写代码、看效果。对于React、Vue这些主流前端框架都支持。
第六款:Python Tutor
Python
Tutor是一个免费教育工具,可帮助学生攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。通过这个工具,教师或学生可以直接在web浏览器中编写Python代码,并逐步可视化地运行程序。
第七款:IPython
如何进行交互式编程?没错,就是通过IPython。IPython相对于Python自带的shell要好用的多,并且能够支持代码缩进、TAB键补全代码等功能。如果进行交互式编程,这是不可缺少的工具。
第八款:Jupyter Notebook
Jupyter
Notebook就像一个草稿本,能将文本注释、数学方程、代码和可视化内容全部组合到一个易于共享的文档中,以Web页面的方式展示,它是数据分析、机器学习的必备工具。
第九款:Pycharm
Pycharm是程序员常常使用的开发工具,简单、易用,并且能够设置不同的主题模式,根据自己的喜好来设置代码风格。
第十款:Python Tutor
这个工具可能对初学者比较有用,而对于中高级程序员则用处较少。这个工具的特色是能够清楚的理解每一行代码是如何在计算机中执行的,中高级程序员一般通过分步调试可以实现类似的功能。这个工具对于最初接触Python、最初来学习编程的同学还是非常有用的,初学者可以体验一下。

㈡ 有哪些好用的Python库

Python作为一门胶水语言,第三方库众多,下面我简单介绍几个好用的Python库:

tensorflow

这是谷歌非常着名的一个开源机器学习框架,在业界非常受欢迎,可以灵活、快速的构建大规模机器学习应用(如神经网络等),性能和可移植性都非常不错,支持GPU并行计算,如果你对机器学习比较感兴趣,也想深入了解一下的话,可以学习一下这个框架,非常不错:

pandas

如果你对数据分析比较感兴趣,那么pandas就是一个非常不错的选择,专门为数据分析而建,内置的函数和方法可以快速处理Excel,CSV等文件,而且提供了实时分析功能,代码量更少,使用起来也更方便,对于数据处理来说,是一个非常不错的分析工具:

matplotlib

这是Python的一个数据可视化库,可以快速制作我们常见的图表,如柱状图、饼状图、散点图等,当然,也不仅仅限于这些,还有很多,如果你想画出更多美丽的图表,可以考虑学习一下这个库,非常值得学习,当然,seaborn,pyecharts等这些可视化库也非常不错:

tushare

如果你对金融财经比较感兴趣,想快速获取股票等行情数据,也不想编写复杂的处理代码,那么tushare就是一个非常不错的选择,自动整合了国内大部分金融财经数据,完成了数据从采集、清洗和存储的全过程,只需简单的几行代码就可以实时快速获取到你所想要的数据,免费且开源:

PyQt

这是Python的一个GUI开发库,如果你想快速创建一个桌面GUI程序,想直接拖拽控件布局界面的话,那么PyQt就是一个非常不错的选择,基于Qt的QtDesigner设计工具,你可以直接拖拽Qt大量的控件快速构建出你自己的桌面应用,简单而又快捷:

Kivy

如果你想利用Python开发一个安卓应用,那么kivy就是一个非常不错的选择,这是Python的一个开源、跨平台的GUI库,只需要编写一套代码,即可运行在大部分桌面及移动平台上,包括winsows,linux,ios,android等,非常不错:

scrapy

这是Python的一个爬虫框架,在也就非常受欢迎,如果你想快速的定制自己的爬虫程序,又不想重复的造轮子的话,可以学习一下这个库,只需要添加少量的代码,就可启动属于自己的一个爬虫应用,非常方便:

django

这是一个流行的PythonWeb框架,如果你想快速构建一个自己的web应用,那么这个框架就非常值得学习,成熟稳重,基于MVC模式,使用起来非常方便,当然,也有轻量级的web框架,如flask,tornado等,也都非常不错:

pygame

如果你想快速开发一个小型游戏,又不想低级语言的束缚,可以考虑学习一下这个库,非常简单,只需要少量的代码便可构建一个游戏应用,当然,它也是一个非常不错的GUI库,对于桌面开发来说,也是一个不错的选择:

you-get

这是Python的一个视频、音频下载库,如果你想免费快速下载优派卜酷、B站、腾讯等网站的视频,安装这个库后,只尘竖穗需要简单的一行命令就可直接下载,非常方便,纤哗而且还可以在线观看,查看视频文件格式及清晰度等,当然,图片也可直接下载:

就介绍这10个不错的Python库吧,对于日常学习开发来说,非常不错,当然,还有许多其他好用的Python库,这个可以到网上搜索一下,非常多,也欢迎大家留言补充。

㈢ python 数据挖掘需要用哪些库和工具

python 数据挖掘常用的库太多了!主要分为以下几大类:
第一数据获取:request,BeautifulSoup
第二基本数学库:numpy
第三 数据库出路 pymongo
第四 图形可视化 matplotlib
第五 树分析基本的库 pandas

数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘本质上像是机器学习和人工智能的基础,它的主要目的是从各种各样的数据来源中,提取出超集的信息,然后将这些信息合并让你发现你从来没有想到过的模式和内在关系。这就意味着,数据挖掘不是一种用来证明假说的方法,而是用来构建各种各样的假说的方法。

想要了解更多有关python 数据挖掘的信息,可以了解一下CDA数据分析师的课程。CDA数据分析师证书的含金量是很高的,简单从两个方面分析一下:首先是企业对于CDA的认可,经管之家CDA LEVEL Ⅲ数据科学家认证证书,属于行业顶尖的人才认证,已获得IBM大数据大学,中国电信,苏宁,德勤,猎聘,CDMS等企业的认可。CDA证书逐渐获得各企业用人单位认可与引进,如中国电信、中国移动、德勤,苏宁,中国银行,重庆统计局等。点击预约免费试听课。

㈣ Python数据分析: 初识Pandas,理解Pandas实现和原理

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理

01 重要的前言

这段时间和一些做数据分析的同学闲聊,我发现数据分析技能入门阶段存在一个普遍性的问题,很多凭着兴趣入坑的同学,都能够很快熟悉Python基础语法,然后不约而同的一头扎进《利用Python进行数据分析》这本经典之中,硬着头皮啃完之后,好像自己什么都会了一点,然而实际操作起来既不知从何操起,又漏洞百出。

至于原因嘛,理解不够,实践不够是两条老牌的拦路虎,只能靠自己来克服。还有一个非常有意思且经常被忽视的因素——陷入举三反一的懵逼状态。

什么意思呢?假如我是个旱鸭子,想去学游泳,教练很认真的给我剖析了蛙泳的动作,扶着我的腰让我在水里划拉了5分钟,接着马上给我讲解了蝶泳,又是划拉了5分钟,然后又硬塞给我潜泳的姿势,依然是划拉5分钟。最后,教练一下子把我丢进踩不到底的泳池,给我呐喊助威。

作为一个还没入门的旱鸭子,教练倾囊授了我3种游泳技巧,让我分别实践了5分钟。这样做的结果就是我哪一种游泳技巧也没学会,只学会了喝水。当一个初学者一开始就陷入针对单个问题的多种解决方法,而每一种方法的实践又浅尝辄止,在面对具体问题时往往会手忙脚乱。

拿Pandas来说,它的多种构造方式,多种索引方式以及类似效果的多种实现方法,很容易把初学者打入举三反一的懵逼状态。所以,尽量避开这个坑也是我写Pandas基础系列的初衷,希望通过梳理和精简知识点的方式,给需要的同学一些启发。目前暂定整个基础系列分为4篇,基础篇过后便是有趣的实战篇。

下面开始进入正题(我真是太唠叨了)。

02 Pandas简介

江湖上流传着这么一句话——分析不识潘大师(PANDAS),纵是老手也枉然。

Pandas是基于Numpy的专业数据分析工具,可以灵活高效的处理各种数据集,也是我们后期分析案例的神器。它提供了两种类型的数据结构,分别是DataFrame和Series,我们可以简单粗暴的把DataFrame理解为Excel里面的一张表,而Series就是表中的某一列,后面学习和用到的所有Pandas骚操作,都是基于这些表和列进行的操作(关于Pandas和Excel的形象关系,这里推荐我的好朋友张俊红写的《对比EXCEL,轻松学习Python数据分析》)。

这里有一点需要强调,Pandas和Excel、SQL相比,只是调用和处理数据的方式变了,核心都是对源数据进行一系列的处理,在正式处理之前,更重要的是谋定而后动,明确分析的意义,理清分析思路之后再处理和分析数据,往往事半功倍。

03 创建、读取和存储

1、创建

在Pandas中我们想要构造下面这一张表应该如何操作呢?

别忘了,第一步一定是先导入我们的库——import pandas as pd

构造DataFrame最常用的方式是字典+列表,语句很简单,先是字典外括,然后依次打出每一列标题及其对应的列值(此处一定要用列表),这里列的顺序并不重要:

左边是jupyter notebook中dataframe的样子,如果对应到excel中,他就是右边表格的样子,通过改变columns,index和values的值来控制数据。

PS,如果我们在创建时不指定index,系统会自动生成从0开始的索引。

2、 读取

更多时候,我们是把相关文件数据直接读进PANDAS中进行操作,这里介绍两种非常接近的读取方式,一种是CSV格式的文件,一种是EXCEL格式(.xlsx和xls后缀)的文件。

读取csv文件:

engine是使用的分析引擎,读取csv文件一般指定python避免中文和编码造成的报错。而读取Excel文件,则是一样的味道:

非常easy,其实read_csv和read_excel还有一些参数,比如header、sep、names等,大家可以做额外了解。实践中数据源的格式一般都是比较规整的,更多情况是直接读取。

3、存储

存储起来一样非常简单粗暴且相似:

04 快速认识数据

这里以我们的案例数据为例,迅速熟悉查看N行,数据格式概览以及基础统计数据。

1、查看数据,掐头看尾

很多时候我们想要对数据内容做一个总览,用df.head()函数直接可以查看默认的前5行,与之对应,df.tail()就可以查看数据尾部的5行数据,这两个参数内可以传入一个数值来控制查看的行数,例如df.head(10)表示查看前10行数据。

2、 格式查看

df.info()帮助我们一步摸清各列数据的类型,以及缺失情况:

从上面直接可以知道数据集的行列数,数据集的大小,每一列的数据类型,以及有多少条非空数据。

3、统计信息概览

快速计算数值型数据的关键统计指标,像平均数、中位数、标准差等等。

我们本来有5列数据,为什么返回结果只有两列?那是因为这个操作只针对数值型的列。其中count是统计每一列的有多少个非空数值,mean、std、min、max对应的分别是该列的均值、标准差、最小值和最大值,25%、50%、75%对应的则是分位数。

05 列的基本处理方式

这里,我们采用SQL四大法宝的逻辑来简单梳理针对列的基本处理方式——增、删、选、改。

温馨提示:使用Pandas时,尽量避免用行或者EXCEL操作单元格的思维来处理数据,要逐渐养成一种列向思维,每一列是同宗同源,处理起来是嗖嗖的快。

1、增

增加一列,用df[‘新列名’] = 新列值的形式,在原数据基础上赋值即可:

2、删:

我们用drop函数制定删除对应的列,axis = 1表示针对列的操作,inplace为True,则直接在源数据上进行修改,否则源数据会保持原样。

3、选:

想要选取某一列怎么办?df[‘列名’]即可:

选取多列呢?需要用列表来传递:df[[‘第一列’,‘第二列’,‘第三列’…]]

4、 改:

好事多磨,复杂的针对特定条件和行列的筛选、修改,放在后面结合案例细讲,这里只讲一下最简单的更改:df[‘旧列名’] = 某个值或者某列值,就完成了对原列数值的修改。

06 常用数据类型及操作

1、字符串

字符串类型是最常用的格式之一了,Pandas中字符串的操作和原生字符串操作几乎一毛一样,唯一不同的是需要在操作前加上".str"。

小Z温馨提示:我们最初用df2.info()查看数据类型时,非数值型的列都返回的是object格式,和str类型深层机制上的区别就不展开了,在常规实际应用中,我们可以先理解为object对应的就是str格式,int64对应的就是int格式,float64对应的就是float格式即可。

在案例数据中,我们发现来源明细那一列,可能是系统导出的历史遗留问题,每一个字符串前面都有一个“-”符号,又丑又无用,所以把他给拿掉:

一般来说清洗之后的列是要替换掉原来列的:

2、 数值型

数值型数据,常见的操作是计算,分为与单个值的运算,长度相等列的运算。

以案例数据为例,源数据访客数我们是知道的,现在想把所有渠道的访客都加上10000,怎么操作呢?

只需要选中访客数所在列,然后加上10000即可,pandas自动将10000和每一行数值相加,针对单个值的其他运算(减乘除)也是如此。

列之间的运算语句也非常简洁。源数据是包含了访客数、转化率和客单价,而实际工作中我们对每个渠道贡献的销售额更感兴趣。(销售额 = 访客数 X 转化率 X 客单价)

对应操作语句:df[‘销售额’] = df[‘访客数’] * df[‘转化率’] * df[‘客单价’]

但为什么疯狂报错?

导致报错的原因,是数值型数据和非数值型数据相互计算导致的。PANDAS把带“%”符号的转化率识别成字符串类型,我们需要先拿掉百分号,再将这一列转化为浮点型数据:

要注意的是,这样操作,把9.98%变成了9.98,所以我们还需要让支付转化率除以100,来还原百分数的真实数值:

然后,再用三个指标相乘计算销售额:

3、时间类型

PANDAS中时间序列相关的水非常深,这里只对日常中最基础的时间格式进行讲解,对时间序列感兴趣的同学可以自行查阅相关资料,深入了解。

以案例数据为例,我们这些渠道数据,是在2019年8月2日提取的,后面可能涉及到其他日期的渠道数据,所以需要加一列时间予以区分,在EXCEL中常用的时间格式是’2019-8-3’或者’2019/8/3’,我们用PANDAS来实现一下:

在实际业务中,一些时候PANDAS会把文件中日期格式的字段读取为字符串格式,这里我们先把字符串’2019-8-3’赋值给新增的日期列,然后用to_datetime()函数将字符串类型转换成时间格式:

转换成时间格式(这里是datetime64)之后,我们可以用处理时间的思路高效处理这些数据,比如,我现在想知道提取数据这一天离年末还有多少天(‘2019-12-31’),直接做减法(该函数接受时间格式的字符串序列,也接受单个字符串):

㈤ 如何利用python进行数据分析

利用python进行数据分析

链接: https://pan..com/s/15VdW4dcuPuIUEPrY3RehtQ

?pwd=3nfn 提取码: 3nfn

本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。


㈥ 如何用python写 数据分析工具

  • 数据导入

  • 导入本地的或者web端的CSV文件;

  • 数据变换;

  • 数据统计描述;

  • 假设检验

  • 单样本t检验;

  • 可视化;

  • 创建自定义函数。

  • 数据导入

    这是很关键的一步,为了后续的分析我们首先需要导入数据。通常来说,数据是CSV格式,就算不是,至少也可以转换成CSV格式。在Python中,我们的操作如下:

    Python

    1

    2

    3

    4

    5

    6

    7

    8

  • import pandas as pd

    # Reading data locally

    df = pd.read_csv('/Users/al-ahmadgaidasaad/Documents/d.csv')

    # Reading data from web

    data_url = "t/Analysis-with-Programming/master/2014/Python/Numerical-Descriptions-of-the-Data/data.csv"

    df = pd.read_csv(data_url)

  • 为了读取本地CSV文件,我们需要pandas这个数据分析库中的相应模块。其中的read_csv函数能够读取本地和web数据。

    数据变换

    既然在工作空间有了数据,接下来就是数据变换。统计学家和科学家们通常会在这一步移除分析中的非必要数据。我们先看看数据:

    Python

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

  • # Head of the data

    print df.head()

    # OUTPUT

    0 12432934148330010553

    1 41589235 4287806335257

    2 17871922 19551074 4544

    317152 14501 3536 1960731687

    4 12662385 25303315 8520

    # Tail of the data

    print df.tail()

    # OUTPUT

    74 2505 20878 3519 1973716513

    7560303 40065 7062 1942261808

    76 63116756 3561 1591023349

    7713345 38902 2583 1109668663

    78 2623 18264 3745 1678716900

  • 对R语言程序员来说,上述操作等价于通过print(head(df))来打印数据的前6行,以及通过print(tail(df))来打印数据的后6行。当然Python中,默认打印是5行,而R则是6行。因此R的代码head(df, n = 10),在Python中就是df.head(n = 10),打印数据尾部也是同样道理。

    在R语言中,数据列和行的名字通过colnames和rownames来分别进行提取。在Python中,我们则使用columns和index属性来提取,如下:

    Python

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

  • # Extracting column names

    print df.columns

    # OUTPUT

    Index([u'Abra', u'Apayao', u'Benguet', u'Ifugao', u'Kalinga'], dtype='object')

    # Extracting row names or the index

    print df.index

    # OUTPUT

    Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], dtype='int64')

  • 数据转置使用T方法,

    Python

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

  • # Transpose data

    print df.T

    # OUTPUT

    01 23 45 67 89

    Abra1243 41581787171521266 5576 927215401039 5424

    Apayao2934 92351922145012385 7452109917038138210588

    Benguet148 42871955 353625307712796 24632592 1064

    Ifugao3300

    ... 69 70 71 72 73 74 75 76 77

    Abra ...12763 247059094 620913316 250560303 631113345

    Apayao ...376251953235126 6335386132087840065 675638902

    Benguet... 2354 4045 5987 3530 2585 3519 7062 3561 2583

    Ifugao ... 9838171251894015560 774619737194221591011096

    Kalinga...

    78

    Abra2623

    Apayao 18264

    Benguet 3745

    Ifugao 16787

    Kalinga16900

    Other transformations such as sort can be done using<code>sort</code>attribute. Now let's extract a specific column. In Python, we do it using either<code>iloc</code>or<code>ix</code>attributes, but<code>ix</code>is more robust and thus I prefer it. Assuming we want the head of the first column of the data, we have

  • 其他变换,例如排序就是用sort属性。现在我们提取特定的某列数据。Python中,可以使用iloc或者ix属性。但是我更喜欢用ix,因为它更稳定一些。假设我们需数据第一列的前5行,我们有:

    Python

    1

    2

    3

    4

    5

    6

    7

    8

    9

  • print df.ix[:, 0].head()

    # OUTPUT

    0 1243

    1 4158

    2 1787

    317152

    4 1266

    Name: Abra, dtype: int64

  • 顺便提一下,Python的索引是从0开始而非1。为了取出从11到20行的前3列数据,我们有:

    Python

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

  • print df.ix[10:20, 0:3]

    # OUTPUT

    AbraApayaoBenguet

    109811311 2560

    1127366 15093 3039

    12 11001701 2382

    13 7212 11001 1088

    14 10481427 2847

    1525679 15661 2942

    16 10552191 2119

    17 54376461734

    18 10291183 2302

    1923710 12222 2598

    20 10912343 2654

  • 上述命令相当于df.ix[10:20, ['Abra', 'Apayao', 'Benguet']]。

    为了舍弃数据中的列,这里是列1(Apayao)和列2(Benguet),我们使用drop属性,如下:

    Python

    1

    2

    3

    4

    5

    6

    7

    8

    9

  • print df.drop(df.columns[[1, 2]], axis = 1).head()

    # OUTPUT

    AbraIfugaoKalinga

    0 1243330010553

    1 4158806335257

    2 17871074 4544

    317152 1960731687

    4 12663315 8520

  • axis参数告诉函数到底舍弃列还是行。如果axis等于0,那么就舍弃行。

    统计描述

    下一步就是通过describe属性,对数据的统计特性进行描述:

    Python

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

  • print df.describe()

    # OUTPUT

    AbraApayaoBenguetIfugao Kalinga

    count 79.000000 79.00000079.000000 79.000000 79.000000

    mean 12874.37974716860.6455703237.39240512414.62025330446.417722

    std16746.46694515448.1537941588.536429 5034.28201922245.707692

    min927.000000401.000000 148.000000 1074.000000 2346.000000

    25% 1524.000000 3435.5000002328.000000 8205.000000 8601.500000

    50% 5790.00000010588.0000003202.00000013044.00000024494.000000

    75%13330.50000033289.0000003918.50000016099.50000052510.500000

    max60303.00000054625.0000008813.00000021031.00000068663.000000

  • 假设检验

    Python有一个很好的统计推断包。那就是scipy里面的stats。ttest_1samp实现了单样本t检验。因此,如果我们想检验数据Abra列的稻谷产量均值,通过零假设,这里我们假定总体稻谷产量均值为15000,我们有:

    Python

    1

    2

    3

    4

    5

    6

    7

  • from scipy import stats as ss

    # Perform one sample t-test using 1500 as the true mean

    print ss.ttest_1samp(a = df.ix[:, 'Abra'], popmean = 15000)

    # OUTPUT

    (-1.1281738488299586, 0.26270472069109496)

  • 返回下述值组成的元祖:

  • t : 浮点或数组类型
    t统计量

  • prob : 浮点或数组类型
    two-tailed p-value 双侧概率值

  • 通过上面的输出,看到p值是0.267远大于α等于0.05,因此没有充分的证据说平均稻谷产量不是150000。将这个检验应用到所有的变量,同样假设均值为15000,我们有:

    Python

    1

    2

    3

    4

    5

    6

  • print ss.ttest_1samp(a = df, popmean = 15000)

    # OUTPUT

    (array([ -1.12817385, 1.07053437, -65.81425599,-4.564575, 6.17156198]),

    array([2.62704721e-01, 2.87680340e-01, 4.15643528e-70,

    1.83764399e-05, 2.82461897e-08]))

  • 第一个数组是t统计量,第二个数组则是相应的p值。

    可视化

    Python中有许多可视化模块,最流行的当属matpalotlib库。稍加提及,我们也可选择bokeh和seaborn模块。之前的博文中,我已经说明了matplotlib库中的盒须图模块功能。

    ;

  • 重复100次; 然后

  • 计算出置信区间包含真实均值的百分比

  • Python中,程序如下:

    Python

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

  • import numpy as np

    import scipy.stats as ss

    def case(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):

    m = np.zeros((rep, 4))

    for i in range(rep):

    norm = np.random.normal(loc = mu, scale = sigma, size = n)

    xbar = np.mean(norm)

    low = xbar - ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

    up = xbar + ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

    if (mu > low) & (mu < up):

    rem = 1

    else:

    rem = 0

    m[i, :] = [xbar, low, up, rem]

    inside = np.sum(m[:, 3])

    per = inside / rep

    desc = "There are " + str(inside) + " confidence intervals that contain "

    "the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"

    return {"Matrix": m, "Decision": desc}

  • 上述代码读起来很简单,但是循环的时候就很慢了。下面针对上述代码进行了改进,这多亏了Python专家,看我上篇博文的15条意见吧。

    Python

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

  • import numpy as np

    import scipy.stats as ss

    def case2(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):

    scaled_crit = ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

    norm = np.random.normal(loc = mu, scale = sigma, size = (rep, n))

    xbar = norm.mean(1)

    low = xbar - scaled_crit

    up = xbar + scaled_crit

    rem = (mu > low) & (mu < up)

    m = np.c_[xbar, low, up, rem]

    inside = np.sum(m[:, 3])

    per = inside / rep

    desc = "There are " + str(inside) + " confidence intervals that contain "

    "the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"

    return {"Matrix": m, "Decision": desc}

  • 更新

    那些对于本文ipython notebook版本感兴趣的,请点击这里。这篇文章由Nuttens Claude负责转换成ipython notebook 。

㈦ python(pandas模块)

Pandas是Python的一个数据分析包,最初由AQR Capital
Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的Pydata开发team继续开发和维护,属于PyData项目的一部分,pandas最初被作为金融数据分析工具而开发出来,因此pandas为时间序列分析提供了很好的支持。

Pandas的名称来自于面板数据和python数据分析。panel
data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型。

Pandas数据结构:

Series:一维数组,与numpy中的一维array类似。二者与Python基本的数据结构list相近,Series如今能保存不同种数据类型,字符串、boolean值、数字等都能保存在series中。

Time-series:以时间为索引的series。

DataFrame:二维的表格型数据结构,很多功能与R中的data.frame类似,可以将DataFrame理解为Series的容器。

Panel :三维的数组,可以理解为DataFrame的容器。

Panel4D:是像Panel一样的4维数据容器。

PanelND:拥有factory集合,可以创建像Panel4D一样N维命名容器的模块。

㈧ python数据分析用什么软件

Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性,这里就为大家分享几个不错的数据分析工具。Python数据分析需要安装的第三方扩展库有:Numpy、Pandas、SciPy、Matplotpb、Scikit-Learn、Keras、Gensim、Scrapy等,以下是第三方扩展库的简要介绍:(推荐学习:Python视频教程)
1. Pandas
Pandas是Python强大、灵活的数据分析和探索工具,包含Series、DataFrame等高级数据结构和工具,安装Pandas可使Python中处理数据非常快速和简单。
Pandas是Python的一个数据分析包,Pandas最初被用作金融数据分析工具而开发出来,因此Pandas为时间序列分析提供了很好的支持。
Pandas是为了解决数据分析任务而创建的,Pandas纳入了大量的库和一些标准的数据模型,提供了高效的操作大型数据集所需要的工具。Pandas提供了大量是我们快速便捷的处理数据的函数和方法。Pandas包含了高级数据结构,以及让数据分析变得快速、简单的工具。它建立在Numpy之上,使得Numpy应用变得简单。
带有坐标轴的数据结构,支持自动或明确的数据对齐。这能防止由于数据结构没有对齐,以及处理不同来源、采用不同索引的数据而产生的常见错误。
使用Pandas更容易处理丢失数据。合并流行数据库(如:基于SQL的数据库)Pandas是进行数据清晰/整理的最好工具。
2. Numpy
Python没有提供数组功能,Numpy可以提供数组支持以及相应的高效处理函数,是Python数据分析的基础,也是SciPy、Pandas等数据处理和科学计算库最基本的函数功能库,且其数据类型对Python数据分析十分有用。
Numpy提供了两种基本的对象:ndarray和ufunc。ndarray是存储单一数据类型的多维数组,而ufunc是能够对数组进行处理的函数。Numpy的功能:
N维数组,一种快速、高效使用内存的多维数组,他提供矢量化数学运算。可以不需要使用循环,就能对整个数组内的数据进行标准数学运算。非常便于传送数据到用低级语言编写(CC++)的外部库,也便于外部库以Numpy数组形式返回数据。
Numpy不提供高级数据分析功能,但可以更加深刻的理解Numpy数组和面向数组的计算。
3. Matplotpb
Matplotpb是强大的数据可视化工具和作图库,是主要用于绘制数据图表的Python库,提供了绘制各类可视化图形的命令字库、简单的接口,可以方便用户轻松掌握图形的格式,绘制各类可视化图形。
Matplotpb是Python的一个可视化模块,他能方便的只做线条图、饼图、柱状图以及其他专业图形。 使用Matplotpb,可以定制所做图表的任一方面。他支持所有操作系统下不同的GUI后端,并且可以将图形输出为常见的矢量图和图形测试,如PDF SVG JPG PNG BMP GIF.通过数据绘图,我们可以将枯燥的数字转化成人们容易接收的图表。 Matplotpb是基于Numpy的一套Python包,这个包提供了吩咐的数据绘图工具,主要用于绘制一些统计图形。 Matplotpb有一套允许定制各种属性的默认设置,可以控制Matplotpb中的每一个默认属性:图像大小、每英寸点数、线宽、色彩和样式、子图、坐标轴、网个属性、文字和文字属性。
4. SciPy
SciPy是一组专门解决科学计算中各种标准问题域的包的集合,包含的功能有最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算等,这些对数据分析和挖掘十分有用。
Scipy是一款方便、易于使用、专门为科学和工程设计的Python包,它包括统计、优化、整合、线性代数模块、傅里叶变换、信号和图像处理、常微分方程求解器等。Scipy依赖于Numpy,并提供许多对用户友好的和有效的数值例程,如数值积分和优化。
Python有着像Matlab一样强大的数值计算工具包Numpy;有着绘图工具包Matplotpb;有着科学计算工具包Scipy。 Python能直接处理数据,而Pandas几乎可以像SQL那样对数据进行控制。Matplotpb能够对数据和记过进行可视化,快速理解数据。Scikit-Learn提供了机器学习算法的支持,Theano提供了升读学习框架(还可以使用CPU加速)。
5. Keras
Keras是深度学习库,人工神经网络和深度学习模型,基于Theano之上,依赖于Numpy和Scipy,利用它可以搭建普通的神经网络和各种深度学习模型,如语言处理、图像识别、自编码器、循环神经网络、递归审计网络、卷积神经网络等。
6. Scikit-Learn
Scikit-Learn是Python常用的机器学习工具包,提供了完善的机器学习工具箱,支持数据预处理、分类、回归、聚类、预测和模型分析等强大机器学习库,其依赖于Numpy、Scipy和Matplotpb等。
Scikit-Learn是基于Python机器学习的模块,基于BSD开源许可证。 Scikit-Learn的安装需要Numpy S Matplotpb等模块,Scikit-Learn的主要功能分为六个部分,分类、回归、聚类、数据降维、模型选择、数据预处理。
Scikit-Learn自带一些经典的数据集,比如用于分类的iris和digits数据集,还有用于回归分析的boston house prices数据集。该数据集是一种字典结构,数据存储在.data成员中,输出标签存储在.target成员中。Scikit-Learn建立在Scipy之上,提供了一套常用的机器学习算法,通过一个统一的接口来使用,Scikit-Learn有助于在数据集上实现流行的算法。 Scikit-Learn还有一些库,比如:用于自然语言处理的Nltk、用于网站数据抓取的Scrappy、用于网络挖掘的Pattern、用于深度学习的Theano等。
7. Scrapy
Scrapy是专门为爬虫而生的工具,具有URL读取、HTML解析、存储数据等功能,可以使用Twisted异步网络库来处理网络通讯,架构清晰,且包含了各种中间件接口,可以灵活的完成各种需求。
8. Gensim
Gensim是用来做文本主题模型的库,常用于处理语言方面的任务,支持TF-IDF、LSA、LDA和Word2Vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算、信息检索等一些常用任务的API接口。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python数据分析用什么软件的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!

热点内容
eclipseandroid运行 发布:2025-02-14 00:54:57 浏览:897
云服务器安全策略 发布:2025-02-14 00:54:07 浏览:289
小米手机如何更改账号密码 发布:2025-02-14 00:48:48 浏览:572
我的世界如何导出服务器 发布:2025-02-14 00:48:39 浏览:722
工业服务器机箱怎么样 发布:2025-02-14 00:29:15 浏览:86
英朗压缩机 发布:2025-02-14 00:29:12 浏览:678
java门面模式 发布:2025-02-14 00:29:09 浏览:917
java旋转 发布:2025-02-14 00:22:49 浏览:104
存储虚拟化方案 发布:2025-02-14 00:21:15 浏览:696
ubuntupython3安装 发布:2025-02-14 00:14:45 浏览:662