python图片识别
⑴ 识别图片的python代码
网址403权限错误。
如果是个人网站,建议检查;如果仅仅是为了测试,建议将图片上传到图床上测试。
提问时建议隐藏API_ID和API_KEY,保护自己的信息。
⑵ python3.5能用的图片识别库,可以识别图片上的英文数字和汉字
先看看你的Visual Studio 14 运行库(64位的系统X86/X64的最好都装上)是不是没有装,如果没有安装的话先装上;如果已经安装了的话,修复一下看看。如果还不行的话那就意味着这些库暂时还不支持Python 3.5.2,还得耐心等待或者使用其他能实现所需要功能的库。你可以试试下载EXE文件自己安装,或者下载源码自己编译。
我在我的电脑(XP/Python3.4.4)上用pip安装试了一下,tesseract-ocr安装不上,其他两个没有问题,估计暂时还不支持Python3.X吧。
tesseract-ocr的EXE安装包下载地址:https://sourceforge.net/projects/tesseract-ocr-alt/files/?source=navbar
我没有尝试使用EXE安装包安装楼主可以自己尝试一下。
希望对楼主有帮助。
⑶ 如何python pil开发图像识别
1. 简介。
图像处理是一门应用非常广的技术,而拥有非常丰富第三方扩展库的 Python 当然不会错过这一门盛宴。PIL (Python Imaging Library)是 Python 中最常用的图像处理库,目前版本为 1.1.7,我们可以在这里下载学习和查找资料。
Image 类是 PIL 库中一个非常重要的类,通过这个类来创建实例可以有直接载入图像文件,读取处理过的图像和通过抓取的方法得到的图像这三种方法。
2. 使用。
导入 Image 模块。然后通过 Image 类中的 open 方法即可载入一个图像文件。如果载入文件失败,则会引起一个 IOError ;若无返回错误,则 open 函数返回一个 Image 对象。现在,我们可以通过一些对象属性来检查文件内容,即:
1 >>> import Image
2 >>> im = Image.open("j.jpg")
3 >>> print im.format, im.size, im.mode
4 JPEG (440, 330) RGB
这里有三个属性,我们逐一了解。
format : 识别图像的源格式,如果该文件不是从文件中读取的,则被置为 None 值。
size : 返回的一个元组,有两个元素,其值为象素意义上的宽和高。
mode : RGB(true color image),此外还有,L(luminance),CMTK(pre-press image)。
现在,我们可以使用一些在 Image 类中定义的方法来操作已读取的图像实例。比如,显示最新载入的图像:
1 >>>im.show()
2 >>>
输出原图:
3.5 更多关于图像文件的读取。
最基本的方式:im = Image.open("filename")
类文件读取:fp = open("filename", "rb"); im = Image.open(fp)
字符串数据读取:import StringIO; im = Image.open(StringIO.StringIO(buffer))
从归档文件读取:import TarIO; fp = TarIo.TarIO("Image.tar", "Image/test/lena.ppm"); im = Image.open(fp)
基本的 PIL 目前就练习到这里。其他函数的功能可点击这里进一步阅读。
⑷ python图像识别,才接触这个麻烦说的详细一点
if lines is not None and lines.any()
⑸ 用python写识别图片主要颜色的程序
#-*-coding:utf-8-*-
importcolorsys
defget_dominant_color(image):
#颜色模式转换,以便输出rgb颜色值
image=image.convert('RGBA')
#生成缩略图,减少计算量,减小cpu压力
image.thumbnail((200,200))
max_score=None
dominant_color=None
forcount,(r,g,b,a)inimage.getcolors(image.size[0]*image.size[1]):
#跳过纯黑色
ifa==0:
continue
saturation=colorsys.rgb_to_hsv(r/255.0,g/255.0,b/255.0)[1]
y=min(abs(r*2104+g*4130+b*802+4096+131072)>>13,235)
y=(y-16.0)/(235-16)
#忽略高亮色
ify>0.9:
continue
#Calculatethescore,.
#Add0.1tothesaturationsowedon'tcompletelyignoregrayscale
#,butstillgivethemalow
#weight.
score=(saturation+0.1)*count
ifscore>max_score:
max_score=score
dominant_color=(r,g,b)
returndominant_color
if__name__=="__main__":
fromPILimportImage
importos
path=r'.\pics\'
fp=open('file_color.txt','w')
forfilenameinos.listdir(path):
printpath+filename
try:
color=get_dominant_color(Image.open(path+filename))
fp.write('Thecolorof'+filename+'is'+str(color)+' ')
except:
print"Thisfileformatisnotsupport"
fp.close()
pics文件夹和python程序在一个目录下,产生的文件名file_color.txt也在这个目录下。
看看能否帮到你
⑹ 这种图片可以用Python自动识别吗
Python图片文本识别使用的工具是PIL和pytesser。因为他们使用到很多的python库文件,为了避免一个个工具的安装,建议使用pythonxy
pytesser是OCR开源项目的一个模块,在Python中导入这个模块即可将图片中的文字转换成文本。pytesser调用了tesseract。当在Python中调用pytesser模块时,pytesser又用tesseract识别图片中的文字。pytesser的使用步骤如下:
首先,安装Python2.7版本,这个版本比较稳定,建议使用这个版本。
其次,安装pythoncv。
然后,安装PIL工具,pytesser的使用需要PIL库的支持。
接着下载pytesser
最后,将pytesser解压,这个是免安装的,可以将解压后的文件cut到Python安装目录的Lib\site-packages下直接使用,比如我的安装目录是:C:\Python27\Lib\site-packages,同时把这个目录添加到环境变量之中。
完成以上步骤之后,就可以编写图片文本识别的Python脚本了。参考脚本如下:
from pytesser import *
import ImageEnhance
image = Image.open('D:\\workspace\\python\\5.png')
#使用ImageEnhance可以增强图片的识别率
enhancer = ImageEnhance.Contrast(image)
image_enhancer = enhancer.enhance(4)
print image_to_string(image_enhancer)
tesseract是谷歌的一个对图片进行识别的开源框架,免费使用,现在已经支持中文,而且识别率非常高,这里简要来个helloworld级别的认识
下载之后进行安装,不再演示。
在tesseract目录下,有个tesseract.exe文件,主要调用这个执行文件,用cmd运行到这个目录下,在这个目录下同时放置一张需要识别的图片,这里是123.jpg
然后运行:tesseract 123.jpg result
会把123.jpg自动识别并转换为txt文件到result.txt
但是此时中文识别不好
然后找到tessdata目录,把eng.traineddata替换为chi_sim.traineddata,并且把chi_sim.traineddata重命名为eng.traineddata
ok,现在中文识别基本达到90%以上了
⑺ python怎么识别图片文字
可以调用opencv来进行识别
⑻ python能做图像识别吗
可以,你可以用它做其余软件能实现的任何功能。大家长用他来处理数据,做深度学习。