python实例下载
❶ python数据分析与应用-Python数据分析与应用 PDF 内部全资料版
给大家带来的一篇关于Python数据相关的电子书资源,介绍了关于Python方面的内容,本书是由人民邮电出版社出版,格式为PDF,资源大小281 MB,黄红梅 张良均编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:7.8。
内容介绍
目录
第1章Python数据分析概述1
任务1.1认识数据分析1
1.1.1掌握数据分析的概念2
1.1.2掌握数据分析的流程2
1.1.3了解数据分析应用场景4
任务1.2熟悉Python数据分析的工具5
1.2.1了解数据分析常用工具6
1.2.2了解Python数据分析的优势7
1.2.3了解Python数据分析常用类库7
任务1.3安装Python的Anaconda发行版9
1.3.1了解Python的Anaconda发行版9
1.3.2在Windows系统中安装Anaconda9
1.3.3在Linux系统中安装Anaconda12
任务1.4掌握Jupyter Notebook常用功能14
1.4.1掌握Jupyter Notebook的基本功能14
1.4.2掌握Jupyter Notebook的高 级功能16
小结19
课后习题19
第2章NumPy数值计算基础21
任务2.1掌握NumPy数组对象ndarray21
2.1.1创建数组对象21
2.1.2生成随机数27
2.1.3通过索引访问数组29
2.1.4变换数组的形态31
任务2.2掌握NumPy矩阵与通用函数34
2.2.1创建NumPy矩阵34
2.2.2掌握ufunc函数37
任务2.3利用NumPy进行统计分析41
2.3.1读/写文件41
2.3.2使用函数进行简单的统计分析44
2.3.3任务实现48
小结50
实训50
实训1创建数组并进行运算50
实训2创建一个国际象棋的棋盘50
课后习题51
第3章Matplotlib数据可视化基础52
任务3.1掌握绘图基础语法与常用参数52
3.1.1掌握pyplot基础语法53
3.1.2设置pyplot的动态rc参数56
任务3.2分析特征间的关系59
3.2.1绘制散点图59
3.2.2绘制折线图62
3.2.3任务实现65
任务3.3分析特征内部数据分布与分散状况68
3.3.1绘制直方图68
3.3.2绘制饼图70
3.3.3绘制箱线图71
3.3.4任务实现73
小结77
实训78
实训1分析1996 2015年人口数据特征间的关系78
实训2分析1996 2015年人口数据各个特征的分布与分散状况78
课后习题79
第4章pandas统计分析基础80
任务4.1读/写不同数据源的数据80
4.1.1读/写数据库数据80
4.1.2读/写文本文件83
4.1.3读/写Excel文件87
4.1.4任务实现88
任务4.2掌握DataFrame的常用操作89
4.2.1查看DataFrame的常用属性89
4.2.2查改增删DataFrame数据91
4.2.3描述分析DataFrame数据101
4.2.4任务实现104
任务4.3转换与处理时间序列数据107
4.3.1转换字符串时间为标准时间107
4.3.2提取时间序列数据信息109
4.3.3加减时间数据110
4.3.4任务实现111
任务4.4使用分组聚合进行组内计算113
4.4.1使用groupby方法拆分数据114
4.4.2使用agg方法聚合数据116
4.4.3使用apply方法聚合数据119
4.4.4使用transform方法聚合数据121
4.4.5任务实现121
任务4.5创建透视表与交叉表123
4.5.1使用pivot_table函数创建透视表123
4.5.2使用crosstab函数创建交叉表127
4.5.3任务实现128
小结130
实训130
实训1读取并查看P2P网络贷款数据主表的基本信息130
实训2提取用户信息更新表和登录信息表的时间信息130
实训3使用分组聚合方法进一步分析用户信息更新表和登录信息表131
实训4对用户信息更新表和登录信息表进行长宽表转换131
课后习题131
第5章使用pandas进行数据预处理133
任务5.1合并数据133
5.1.1堆叠合并数据133
5.1.2主键合并数据136
5.1.3重叠合并数据139
5.1.4任务实现140
任务5.2清洗数据141
5.2.1检测与处理重复值141
5.2.2检测与处理缺失值146
5.2.3检测与处理异常值149
5.2.4任务实现152
任务5.3标准化数据154
5.3.1离差标准化数据154
5.3.2标准差标准化数据155
5.3.3小数定标标准化数据156
5.3.4任务实现157
任务5.4转换数据158
5.4.1哑变量处理类别型数据158
5.4.2离散化连续型数据160
5.4.3任务实现162
小结163
实训164
实训1插补用户用电量数据缺失值164
实训2合并线损、用电量趋势与线路告警数据164
实训3标准化建模专家样本数据164
课后习题165
第6章使用scikit-learn构建模型167
任务6.1使用sklearn转换器处理数据167
6.1.1加载datasets模块中的数据集167
6.1.2将数据集划分为训练集和测试集170
6.1.3使用sklearn转换器进行数据预处理与降维172
6.1.4任务实现174
任务6.2构建并评价聚类模型176
6.2.1使用sklearn估计器构建聚类模型176
6.2.2评价聚类模型179
6.2.3任务实现182
任务6.3构建并评价分类模型183
6.3.1使用sklearn估计器构建分类模型183
6.3.2评价分类模型186
6.3.3任务实现188
任务6.4构建并评价回归模型190
6.4.1使用sklearn估计器构建线性回归模型190
6.4.2评价回归模型193
6.4.3任务实现194
小结196
实训196
实训1使用sklearn处理wine和wine_quality数据集196
实训2构建基于wine数据集的K-Means聚类模型196
实训3构建基于wine数据集的SVM分类模型197
实训4构建基于wine_quality数据集的回归模型197
课后习题198
第7章航空公司客户价值分析199
任务7.1了解航空公司现状与客户价值分析199
7.1.1了解航空公司现状200
7.1.2认识客户价值分析201
7.1.3熟悉航空客户价值分析的步骤与流程201
任务7.2预处理航空客户数据202
7.2.1处理数据缺失值与异常值202
7.2.2构建航空客户价值分析关键特征202
7.2.3标准化LRFMC模型的5个特征206
7.2.4任务实现207
任务7.3使用K-Means算法进行客户分群209
7.3.1了解K-Means聚类算法209
7.3.2分析聚类结果210
7.3.3模型应用213
7.3.4任务实现214
小结215
实训215
实训1处理信用卡数据异常值215
实训2构造信用卡客户风险评价关键特征217
实训3构建K-Means聚类模型218
课后习题218
第8章财政收入预测分析220
任务8.1了解财政收入预测的背景与方法220
8.1.1分析财政收入预测背景220
8.1.2了解财政收入预测的方法222
8.1.3熟悉财政收入预测的步骤与流程223
任务8.2分析财政收入数据特征的相关性223
8.2.1了解相关性分析223
8.2.2分析计算结果224
8.2.3任务实现225
任务8.3使用Lasso回归选取财政收入预测的关键特征225
8.3.1了解Lasso回归方法226
8.3.2分析Lasso回归结果227
8.3.3任务实现227
任务8.4使用灰色预测和SVR构建财政收入预测模型228
8.4.1了解灰色预测算法228
8.4.2了解SVR算法229
8.4.3分析预测结果232
8.4.4任务实现234
小结236
实训236
实训1求取企业所得税各特征间的相关系数236
实训2选取企业所得税预测关键特征237
实训3构建企业所得税预测模型237
课后习题237
第9章家用热水器用户行为分析与事件识别239
任务9.1了解家用热水器用户行为分析的背景与步骤239
9.1.1分析家用热水器行业现状240
9.1.2了解热水器采集数据基本情况240
9.1.3熟悉家用热水器用户行为分析的步骤与流程241
任务9.2预处理热水器用户用水数据242
9.2.1删除冗余特征242
9.2.2划分用水事件243
9.2.3确定单次用水事件时长阈值244
9.2.4任务实现246
任务9.3构建用水行为特征并筛选用水事件247
9.3.1构建用水时长与频率特征248
9.3.2构建用水量与波动特征249
9.3.3筛选候选洗浴事件250
9.3.4任务实现251
任务9.4构建行为事件分析的BP神经网络模型255
9.4.1了解BP神经网络算法原理255
9.4.2构建模型259
9.4.3评估模型260
9.4.4任务实现260
小结263
实训263
实训1清洗运营商客户数据263
实训2筛选客户运营商数据264
实训3构建神经网络预测模型265
课后习题265
附录A267
附录B270
参考文献295
学习笔记
Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。 Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等 。 定义 (推荐学习:Python视频教程) 用户可以通过电子邮件,Dropbox,GitHub 和 Jupyter Notebook Viewer,将 Jupyter Notebook 分享给其他人。 在Jupyter Notebook 中,代码可以实时的生成图像,视频,LaTeX和JavaScript。 使用 数据挖掘领域中最热门的比赛 Kaggle 里的资料都是Jupyter 格式 。 架构 Jupyter组件 Jupyter包含以下组件: Jupyter Notebook 和 ……
本文实例讲述了Python实现的微信好友数据分析功能。分享给大家供大家参考,具体如下: 这里主要利用python对个人微信好友进行分析并把结果输出到一个html文档当中,主要用到的python包为 itchat , pandas , pyecharts 等 1、安装itchat 微信的python sdk,用来获取个人好友关系。获取的代码 如下: import itchatimport pandas as pdfrom pyecharts import Geo, Baritchat.login()friends = itchat.get_friends(update=True)[0:]def User2dict(User): User_dict = {} User_dict["NickName"] = User["NickName"] if User["NickName"] else "NaN" User_dict["City"] = User["City"] if User["City"] else "NaN" User_dict["Sex"] = User["Sex"] if User["Sex"] else 0 User_dict["Signature"] = User["Signature"] if User["Signature"] else "NaN" ……
基于微信开放的个人号接口python库itchat,实现对微信好友的获取,并对省份、性别、微信签名做数据分析。 效果: 直接上代码,建三个空文本文件stopwords.txt,newdit.txt、unionWords.txt,下载字体simhei.ttf或删除字体要求的代码,就可以直接运行。 #wxfriends.py 2018-07-09import itchatimport sysimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']#绘图时可以显示中文plt.rcParams['axes.unicode_minus']=False#绘图时可以显示中文import jiemport jieba.posseg as psegfrom scipy.misc import imreadfrom wordcloud import WordCloudfrom os import path#解决编码问题non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd) #获取好友信息def getFriends():……
Python数据分析之双色球基于线性回归算法预测下期中奖结果示例
本文实例讲述了Python数据分析之双色球基于线性回归算法预测下期中奖结果。分享给大家供大家参考,具体如下: 前面讲述了关于双色球的各种算法,这里将进行下期双色球号码的预测,想想有些小激动啊。 代码中使用了线性回归算法,这个场景使用这个算法,预测效果一般,各位可以考虑使用其他算法尝试结果。 发现之前有很多代码都是重复的工作,为了让代码看的更优雅,定义了函数,去调用,顿时高大上了 #!/usr/bin/python# -*- coding:UTF-8 -*-#导入需要的包import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport operatorfrom sklearn import datasets,linear_modelfrom sklearn.linear_model import LogisticRegression#读取文件d……
以上就是本次介绍的Python数据电子书的全部相关内容,希望我们整理的资源能够帮助到大家,感谢大家对鬼鬼的支持。
注·获取方式:私信(666)
❷ 推荐几个适合新手练手的Python项目
《Python实战:四周实现爬虫系统》网络网盘免费下载
链接:
Python实战:四周实现爬虫系统
❸ python入门实例教程
python入门实例教程!
步骤1:这里我将简单告诉大家一个用python软件编写的一个关于货物售价折扣方面的一个计算程序,首先打开python软件。
步骤2:进入python后,会出现如图所示界面,按照图中箭头指示,先选择File选项,然后在下拉菜单中选择New file选项。
步骤3:选择完毕后,会出现一个新的界面,如图箭头和红色框指示。
步骤4:进入这个新的界面,在里面输入自己想编辑的程序,如图所示是我自己编写的一个关于货物售价折扣方面的一个简单的计算程序。
步骤5:程序输入完毕后,按照图中箭头和红色框指示,先选择Run选项,然后在下拉菜单中选择Run Mole(注:除此方法外还可以点击键盘F5)。
步骤6:此时会在原界面出现如图所示的字样,这是因为我编写程序编辑好的,此时你可以输入一个数字,然后回车,它又会让你输入一个折扣,输入完即可得出最后售价结果。
步骤7:如图所示,这里我输入的原价是10,折扣是0.2,故此系统根据我编写的程序计算除了打折后的价格为2。
❹ 《Python数据分析与挖掘实战》epub下载在线阅读全文,求百度网盘云资源
《Python数据分析与挖掘实战》(张良均)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1WwF3Vi3vszdZYBKKw7Y0HQ
书名:Python数据分析与挖掘实战
作者:张良均
豆瓣评分:7.6
出版社:机械工业出版社
出版年份:2016-1
页数:335
内容简介:
10余位数据挖掘领域资深专家和科研人员,10余年大数据挖掘咨询与实施经验结晶。从数据挖掘的应用出发,以电力、航空、医疗、互联网、生产制造以及公共服务等行业真实案例为主线,深入浅出介绍Python数据挖掘建模过程,实践性极强。
本书共15章,分两个部分:基础篇、实战篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的数据挖掘理论。读者在阅读过程中,应充分利用随书配套的案例建模数据,借助相关的数据挖掘建模工具,通过上机实验,以快速理解相关知识与理论。
基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对本书所用到的数据挖掘建模工具Python语言进行了简明扼要的说明;第3章、第4章、第5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。
实战篇(第6~15章),重点对数据挖掘技术在电力、航空、医疗、互联网、生产制造以及公共服务等行业的应用进行了分析。在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程的关键环节,穿插程序实现代码。最后通过上机实践,加深读者对数据挖掘技术在案例应用中的理解。
作者简介:
张良均 ,资深大数据挖掘专家和模式识别专家,高级信息项目管理师,有10多年的大数据挖掘应用、咨询和培训经验。为电信、电力、政府、互联网、生产制造、零售、银行、生物、化工、医药等多个行业上百家大型企业提供过数据挖掘应用与咨询服务,实践经验非常丰富。此外,他精通Java EE企业级应用开发,是广东工业大学、华南师范大学、华南农业大学、贵州师范学院、韩山师范学院、广东技术师范学院兼职教授,着有《神经网络实用教程》、《数据挖掘:实用案例分析》、《MATLAB数据分析与挖掘实战》《R语言数据分析与挖掘实战》等畅销书。
❺ Python下载网络文本数据到本地内存的四种实现方法
本文实例讲述了Python下载网络文本数据到本地内存的四种实现方法羡凳埋。分享给大家供大粗埋家参考,具体如下:
?
1
234
import
urllib.request
import
requests
from
io
import
StringIO
import
numpy as np
import
pandas as pd
下载网兄蚂络文件,并导入CSV文件作为numpy的矩阵
# 网络数据文件地址
url
=
# 方法一
# ========================================================
# 下载文件
#r = urllib.request.urlopen(url)
# 导入CSV文件作为numpy的矩阵
#dataset = np.loadtxt(r, delimiter=,)
# 方法二
# ========================================================
# 下载文件
#r = requests.get(url)
# 导入CSV文件作为numpy的矩阵❻ 求python的项目实例教程
Python实战:四周实现爬虫系统(高清视频)网络网盘
链接:
若资源有问题欢迎追问~
❼ python软件开发的案例有哪些,可用于哪些开发(python可以进行软件开发吗)
列举一些比较有名的网站或应用。这其中有一些是用python进行开发,有一些在部分业务或功能上使用到了python,还有的是支持python作为扩展脚本语言。数据大部分来自Wikepedia和Quora。
Reddit-社交分享网站,最早用Lisp开发,在2005年转为python
Dropbox-文件分享服务
豆瓣网-图书、唱片、电影等文化产品的资料数据凯慎库网站
Django-鼓励快速开发的Web应用框架
Fabric-用于管理成百上千台Linux主机的程序库
EVE-网络游戏EVE大量使用Python进行开搜派发
Blender-以C与Python开发的开源3D绘图软件
BitTorrent-bt下载软件客户端
UbuntuSoftwareCenter-Ubuntu9.10版本后自带的图形化包管理器
YUM-用于RPM兼容的Linux系统上的包管理器
IV-游戏《文明4》
Battlefield2-游戏《战地2》
Google-谷歌在很多项目中用python作为网络应用的后端,如GoogleGroups、Gmail、GoogleMaps等,GoogleAppEngine支持python作为开发语言
NASA-美国宇航局,从1994年起把python作为主要开发语言
InstrialLight&Magic-工业光魔,乔治·卢卡斯创立的电影特效公司
Yahoo!Groups-雅虎推出的群组交流平台
YouTube-视频分享网站,在某些功能上使用到python
Cinema4D-一套整合3D模型、动画与绘图的高级三维绘盯漏敬图软件,以其高速的运算和强大的渲染插件着称
AutodeskMaya-3D建模软件,支持python作为脚本语言
gedit-Linux平台的文本编辑器
GIMP-Linux平台的图像处理软件
Minecraft:PiEdition-游戏《Minecraft》的树莓派版本
MySQLWorkbench-可视化数据库管理工具
Digg-社交新闻分享网站
Mozilla-为支持和领导开源的Mozilla项目而设立的一个非营利组织
Quora-社交问答网站
Path-私密社交应用
Pinterest-图片社交分享网站
SlideShare-幻灯片存储、展示、分享的网站
Yelp-美国商户点评网站
Slide-社交游戏/应用开发公司,被谷歌收购
❽ 《Python语言及其应用》pdf下载在线阅读,求百度网盘云资源
《Python语言及其应用》([美] Bill Lubanovic)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1WqB-9j7e6PtrlAjkYJV7Kg
书名:Python语言及其应用
作者:[美] Bill Lubanovic
译者:丁嘉瑞
豆瓣评分:8.5
出版社:人民邮电出版社
出版年份:2016-1
页数:383
内容简介:
本书介绍Python 语言的基础知识及其在各个领域的具体应用,基于最新版本3.x。书中首先介绍了Python 语言的一些必备基本知识,然后介绍了在商业、科研以及艺术领域使用Python 开发各种应用的实例。文字简洁明了,案例丰富实用,是一本难得的Python 入门手册。
作者简介:
Bill Lubanovic
现为Penguin Computing公司高级软件工程师。1977年开始开发Unix软件,1981年开始开发GUI软件,1990年开始开发数据库软件,1993年开始开发Web软件。与人合着有Linux System Administration。
❾ python能做什么有趣的东西
python能做什么有趣的东西?下面给大家介绍35个Python实例:
1. Python3 实现图片识别
2. Python3 图片隐写术
3. 200 行 Python 代码实现 2048
4. Python实现3D建模工具
5. 使用 Python 定制词云
相关推荐:《Python教程》
6. Python3 智能裁切图片
7.微信变为聊天机器人
8. 使用 Python 解数学方程
9. 使用 Python 创建照片马赛克
10. Python 基于共现提取《釜山行》人物关系
11. Python 气象数据分析:《Python 数据分析实战》
12. NBA常规赛结果预测:利用Python进行比赛数据分析
13. Python 的循环语句和隐含波动率的计算
14. K-近邻算法实现手写数字识别系统
15. 数独游戏的 Python 实现与破解
16. 基于 Flask 与 MySQL 实现番剧推荐系
17. Python 实现英文新闻摘要自动提取
18. Python 解决哲学家就餐问题
19. Ebay 在线拍卖数据分析
20. 神经网络实现人脸识别任务
21. 使用 Python 解数学方程
22. Python3 实现火车票查询工具
23. Python 实现端口扫描器
24. Python3 实现可控制肉鸡的反向Shell
25. Python 实现 FTP 弱口令扫描器
26. 基于PyQt5 实现地图中定位相片拍摄位置
27. Python实现网站模拟登陆
28.Python实现简易局域网视频聊天工具
29. 基于 TCP 的 python 聊天程序
30. Python3基于Scapy实现DDos
31. 高德API + Python 解决租房问题
32. 基于 Flask 与 RethinkDB 实现TODO List
33. Python3 实现简单的 Web 服务器
34. Python 实现 Redis 异步客户端
35. 仿 StackOverflow 开发在线问答系统