python凸优化
数据结构和算法是程序员的基本功,学了只有好处没有坏处。
Python语言内置了很多数据类型、标准库,一定要懂常见算法的原理和基本实现方式。
如果计划往人工智能领域发展,机器学习是数学,必须掌握一些必要的数学基础,学工作上实际有用到的,比如是微积分、概率论、线性代数、凸优化等这些。数据分析里需要应用到的内容也需要掌握,算法方面需要掌握一些基本的框架:python、spark、mllib、scikit-learning、pytorch、TensorFlow,数据方面需要懂得HQL、numpy、pandas,如果你本身是后台开发、app开发、数据分析、项目管理,则是一个学习算法的一个加分项。
② 数据分析中的数据挖掘侧重学习什么
数据森嫌答挖掘这项工作十分有前景,同时在薪资方面也十分出色。下面是学习数据挖掘需要侧重的知识点。
1.统计知识
在做数据分析,统计的知识肯定是需要的, Excel、SPSS、R等是需要掌握的基本技能。如果我们做数据挖掘的话,就要重视数学知识,数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。
2.概率知识
而朴素贝叶斯算法需要概率方面的知识, SKM算法需要高等代数或者区间论方面的知识。当然,我们可以直接套模型,R、P ython这些工具有现成的算法包,可以直接套用。但如果我们想深入学习这些算法,最好去学习一些数学知识,也会让我此慧们以后的路走得更顺畅。我们经常会用到的语言包括Python、Java、C或者C++。
3.数据挖掘的数据类型
那么可以挖掘的数据类型都有什么呢?关系数据库、数据仓库、事务数据库、空间数据库、时间序列数据库、文本数据库和多媒体数据库。
4.数据仓库
数据仓库就是通过数据清理、数据变换、数据集成、数据装入和定期数者哪据刷新构造。
关于大数据挖掘工程师的课程,推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。点击预约免费试听课。
③ python非线性规划用什么模块
python非线性规划用什么模块本文使用SciPy的optimize模块来求解非线性规划问题,结合实际例子,引入非线性规划问题的求解算法及相应函数的调用。
本文提纲一维搜索/单变量优化问题
无约束多元优化问题
非线性最小二乘问题
约束优化问题
非线性规划问题的目标函数或约束条件是非线性的。本文使用SciPy的optimize模块来求解非线性规划问题。
目标函镇滚数和约束搏清条件是否连续光滑是非常重要的性质,这是因为如果光滑,则所有决策变量可微,多变量函数的偏导数组成的向量为梯度,梯度是指向目标函数增长最快的方向。将目标函数梯度作为搜索方向,对非线性规划问题的求解具有重要的意义。这些函数或其导数\梯度的不基旅前连续性给许多现有的非线性优化问题的求解带来了困难。在下文中,我们假设这些函数是连续且光滑的。
# Importing Moles
from scipy import optimize
import matplotlib.pyplot as plt
import numpy as np
import sympy
1、一维搜索/单变量优化问题(Univariate Optimization)
无约束非线性规划最简单的形式是一维搜索。一维搜索通常作为多维优化问题中的一部分出现,比如梯度下降法中每次最优迭代步长的估计。求解一维搜索常用的两类方法是函数逼近法和区间收缩法。其中函数逼近法是指用较简单的函数近似代替原来的函数,用近似函数的极小点来估计原函数的极小点,比如牛顿法;区间收缩法对于一个单谷函数通过迭代以不断缩小该区间的长度,当区间长度足够小时,可将该区间中的一点作为函数的极小点,比如黄金分割法。
e.g. 最小化一个单位体积的圆柱体的表面积。
r, h = sympy.symbols("r, h")
Area = 2 * sympy.pi * r**2 + 2 * sympy.pi * r * h
Volume = sympy.pi * r**2 * h
④ 如何利用 Python 实现 SVM 模型
我先直观地阐述我对SVM的理解,这其中不会涉及数学公式,然后给出Python代码。
SVM是一种二分类模型,处理的数据可以分为三类:
线性可分,通过硬间隔最大化,学习线性分类器
近似线性可分,通过软间隔最大化,学习线性分类器
线性不可分,通过核函数以及软间隔最大化,学习非线性分类器
线性分类器,在平面上对应直线;非线性分类器,在平面上对应曲线。
硬间隔对应于线性可分数据集,可以将所有样本正确分类,也正因为如此,受噪声样本影响很大,不推荐。
软间隔对应于通常情况下的数据集(近似线性可分或线性不可分),允许一些超平面附近的样本被错误分类,从而提升了泛化性能。
如下图:
我们可以看到,当支持向量太少,可能会得到很差的决策边界。如果支持向量太多,就相当于每次都利用整个数据集进行分类,类似KNN。⑤ python实现资产配置(1)----Markowitz 投资组合模型
现假设有A, B, C, D, E五只股票的收益率数据((第二日收盘价-第一日收盘价)/第一日收盘价)), 如果投资人的目标是达到20%的年收益率,那么该如何进行资产配置,才能使得投资的风险最低?
更一般的问题,假设现有x 1 ,x 2 ,...,x n , n支风险资产,且收益率已知,如果投资人的预期收益为goalRet,那么该如何进行资产配置,才能使得投资的风险最低?
1952年,芝加哥大学的Markowitz提出现代资产组合理论(Modern Portfolio Theory,简称MPT),为现代西方证券投资理论奠定了基础。其基本思想是,证券投资的风险在于证券投资收益的不确定性。如果将收益率视为一个数学上的随机变量的话,证券的期望收益是该随机变量的数学期望(均值),而风险可以用该随机变量的方差来表示。
对于投资组合而言,如何分配各种证券上的投资比例,从而使风险最小而收益最大?
答案是将投资比例设定为变量,通过数学规划,对每一固定收益率求最小方差,对每一个固定的方差求最大收益率,这个多元方程的解可以决定一条曲线,这条曲线上的每一个点都对应着最优投资组合,即在给定风险水平下,收益率最大,这条曲线称作“有效前沿” (Efficient Frontier)。
对投资者而言,不存在比有效前沿更优的投资组合,只需要根据自己的风险偏好在有效前沿上寻找最优策略。
简化后的公式为:
其中 p 为投资人的投资目标,即投资人期待的投资组合的期望值. 目标函数说明投资人资产分配的原则是在达成投资目标 p 的前提下,要将资产组合的风险最小化,这个公式就是Markowitz在1952年发表的'Portfolio Selection'一文的精髓,该文奠定了现代投资组合理论的基础,也为Markowitz赢得了1990年的诺贝尔经济学奖. 公式(1)中的决策变量为w i , i = 1,...,N, 整个数学形式是二次规划(Quadratic Programming)问题,在允许卖空的情况下(即w i 可以为负,只有等式约束)时,可以用拉格朗日(Lagrange)方法求解。
有效前缘曲线如下图:
我们考虑如下的二次规划问题
运用拉格朗日方法求解,可以得到
再看公式(1),则将目标函数由 min W T W 调整为 min 1/2(W T W), 两问题等价,写出的求解矩阵为:
工具包: CVXOPT python凸优化包
函数原型: CVXOPT.solvers.qp(P,q,G,h,A,b)
求解时,将对应的P,q,G,h,A,b写出,带入求解函数即可.值得注意的是输入的矩阵必须使用CVXOPT 中的matrix函数转化,输出的结果要使用 print(CVXOPT.solvers.qp(P,q,G,h,A,b)['x']) 函数才能输出。
这里选取五支股票2014-01-01到2015-01-01的收益率数据进行分析.
选取的五支股票分别为: 白云机场, 华夏银行, 浙能电力, 福建高速, 生益科技
先大体了解一下五支股票的收益率情况:
看来,20%的预期收益是达不到了。
接下来,我们来看五支股票的相关系数矩阵:
可以看出,白云机场和福建高速的相关性较高,因为二者同属于交通版块。在资产配置时,不利于降低非系统性风险。
接下来编写一个MeanVariance类,对于传入的收益率数据,可以进行给定预期收益的最佳持仓配比求解以及有效前缘曲线的绘制。
绘制的有效前缘曲线为:
将数据分为训练集和测试集,并将随机模拟的资产配比求得的累计收益与测试集的数据进行对比,得到:
可以看出,在前半段大部分时间用Markowitz模型计算出的收益率要高于随机模拟的组合,然而在后半段却不如随机模拟的数据,可能是训练的数据不够或者没有动态调仓造成的,在后面写策略的时候,我会加入动态调仓的部分。
股票分析部分:
Markowitz 投资组合模型求解
蔡立专:量化投资——以python为工具. 电子工业出版社
⑥ 支持向量机—从推导到python手写
笔者比较懒能截图的地方都截图了。
支持向量机分为三类:
(1)线性可分支持向量机,样本线性可分,可通过硬间隔最大化训练一个分类器。
(2)线性支持向量机,样本基本线性可分,可通过软间隔最大化训练一个分类器。
(3)非线性支持向量机,样本线性不可分,可通过核函数和软间隔最森闹大化训练一个分类器。
上面最不好理解的恐怕就是硬间隔和软间隔了,
说白了硬间隔就是说存在这么一个平面,可以把样本完全正确无误的分开,当然这是一种极理想的情况,现实中不存在,所以就有了软间隔。
软间隔说的是,不存在一个平面可以把样本完全正确无误的分开,因此呢允许一些样本被分错,怎么做呢就是加入松弛变量,因为希望分错的样本越小越好,因此松弛变量也有约束条件。加入松弛变量后,问题就变为线性可分了,因为是每一个样本都线性可分,因此松弛变量是针对样本的,每一个样本都对应一个不同的松弛变量。
其实感知机说白了就是找到一条直线把样本点分开,就是上方都是一类,下方是另一类。当然完全分开是好事,往往是不能完全分开的,因此就存在一个损失函数,就是误分类点到这个平面的距离最短:
这里啰嗦一句,误分类点y*(wx+b)<0,所以加个负号在前边。
一般情况下||w||都是可以缩放,那么我们把它缩放到1,最后的目标函数就变成了
间隔就是距离,我们假设分离超平面为 ,那么样本点到此毁罩这个平面的距离可以记为 。我们都知道通过感知机划分的点,超平面上方的点 ,下方的点 ,然后通过判断 的值与y的符号是否一致来判断分类是否正确。根据这个思路函数间隔定义为:
支持向量的定义来源于几何间隔,几何间隔最直接的解释是离分隔超平面最近点的距离,其他任何点到平面的距离都大于这个值,所以几何间隔就是支持向量。然后呢同样道理,w和b是可以缩放的,所以定义支持向量满足如下条件:
再通俗一点说余森,支持向量是一些点,这些点到分隔平面的距离最近,为了便于表示,把他们进行一下缩放计算,让他们满足了wx+b=+-1.
核函数是支持向量机的核心概念之一,它存在的目的就是将维度转换之后的计算简化,达到减少计算量的目的。我们都知道支持向量机求的是间距最大化,通常情况下我们求得的alpha都等于0,因此支持向量决定了间距最大化程度。
核函数的形式是这样的
其中x(i)和x(j)都是向量,他们两个相乘就是向量内积,相乘得到一个数。刚才说了目标函数一般只和支持向量有关,因此在做核函数计算之前,实际就是选择的支持向量进行计算。
这个写完下面得再补充
我们知道了支持向量的概念,那么支持向量机的目标函数是要使这两个支持向量之间的距离尽可能的远,因为这样才能更好地把样本点分开,当然支持向量也要满足最基本的约束条件,那就是分类正确,还有就是其他点到分隔平面的距离要大于等于支持向量到分隔平面的距离。
这种凸优化问题都可以通过拉格朗日算子进行优化,就是把约束条件通过拉格朗日系数放到目标函数上。这部分基础知识,就是拉格朗日算法可以将等式约束和不等式约束都加到目标函数上,完成求解问题的转换,但是要满足一些约束条件,也就是我们后边要说的kkt条件。
这里有个细节就是转换时候的加减号问题,这个和目标函数还有约束的正负号有关。一般这么理解,就是求最小化问题时候,如果约束是大于0的,那么拉个朗日算子可以减到这一部分,这样一来目标函数只能越来越小,最优解就是约束为0的时候,这个时候和没有约束的等价,再求最小就是原问题了。
这里是最小化问题,直接减掉这部分约束,然后后半部分永远大于等于0所以这个式子的值是要小于原来目标函数值的。我们知道当x满足原问题的约束条件的时候,最大化L就等于那个原目标函数。所以我们可以把这个问题转化为:
把它带回去原来的目标函数中,整理一下。
这个时候只要求最优的α,就可以求出w和b了。我们上边做了那么一堆转换,这个过程要满足一个叫做kkt条件的东西,其实这个东西就是把一堆约束条件整理到一起。
(1)原有问题的可行性,即h(x )=0,g(x )<0
放到这里就是:
SMO算法的核心思想是求出最优化的α,然后根据之前推导得到的w,b,α之间的关系计算得到w和b,最后的计算公式是:
现在的问题就是怎么求α了。
SMO算法总共分两部分,一部分是求解两个α的二次规划算法,另一部分是选择两个α的启发式算法。
先说这个选择α的启发式算法部分:大神可以证明优先优化违反kkt条件的α可以最快获得最优解,至于咋证明的,就先不看了。
在讲支持向量机的求解算法时候,直接给出了核函数K,那么怎么去理解核函数呢。核函数的作用是解决样本点在高维空间的内积运算问题,怎么理解呢,通常的分类问题都是有很多个特征的,然后为了达到现线性可分,又会从低维映射到高维,样本量再一多计算量非常大,因此先通过函数进行一个转换,减少乘法的计算量。
要理解核函数,先理解内积运算,内积运算实际是两个向量,对应位置相乘加和,比如我有x1 = [v1,v2], x2=[w1,w2],那么x1和x2的内积计算方法就是:v1w1+v2w2。
如果上面那种情况线性不可分,需要到高维进行映射,让数据变得线性可分,然后数据变为五维的,即v1 2+v2 2+v1+v2+v1v2,然后再进行一次内积计算,数据变为 。
稍作变换,可以变为 ,形式展开和上边那个长式子差不多,然后其实可以映射内积相乘的情况,所以可以进行核函数的变化。
问题在于,当你需要显式的写出来映射形式的时候,在维度很高的时候,需要计算的量太大,比如x1有三个维度,再进行映射就有19维度了,计算很复杂。如果用核函数,还是在原来低维度进行运算,既有相似的效果(映射到高维),又低运算量,这就是核函数的作用了。
核函数的种类:
这部分的核心在于SMO算法的编写。有待补充。
⑦ 数据挖掘方向,Python中还需要学习哪些内容
就题论题,还包括:
1. Python 数据库连接库,例如Mysql 连接库的应用,这决定你的数据从哪里来。这里面涉及到sql语法和数据库基本知识,是你在学习的时候必须一起学会的。
2. Python 做基本数据计算和预处理的库,包括numpy ,scipy,pandas 这三个用得最多。
3. 数据分析和挖掘库,主要是sklearn,Statsmodels。前者是最广泛的机器学习库,后者是侧重于统计分析的库。(要知道统计分析大多时候和数据挖掘都错不能分开使用)
4. 图形展示库。matpotlib,这是用的最多的了。
说完题主本身 要求,楼上几位说的对,你还需要一些关于数据挖掘算法的基本知识和认知,否则即使你调用相关库得到结果,很可能你都不知道怎么解读,如何优化,甚至在什么场景下还如何选择算法等。因此基本知识你得了解。主要包括:
1.统计学相关,看看深入浅出数据分析和漫画统计学吧,虽然是入门的书籍,但很容易懂。
2.数据挖掘相关,看看数据挖掘导论吧,这是讲算法本身得书。
剩下的就是去实践了。有项目就多参与下项目,看看真正的数据挖掘项目是怎么开展的,流程怎样等。没有项目可以去参加一些数据挖掘或机器学习方面的大赛,也是增加经验得好方法。
⑧ 凸优化的凸优化问题的意义
之所以要研究凸优化问题是因为其有一套非常完备的求解算法,如果将某个优化问题确认或者转化为
凸优化问题,那么能够快速给出最优解。
在MATLAB软件里面有相应的软件包,可以用来学习。
也可以利用其他的开源的计算软件,利用现成的软件包来解决凸优化问题,例如: cvx (MATLAB), cvxopt (python).
⑨ python怎么样好学吗
谢谢邀请,学习选择很重要!!!
从未接触过编程,首先应该选择一门语言那么我推荐python
学习重要是选对方法!!!
python之所以火是因为人工智能的发展,个人整理学习经验仅供参考!
感觉有本书《Python3破冰人工智能从入门到实战》你学的差不多了就基本具备了一名合格的python编程工程师,不过可惜的是这本书没有电子版,只有纸质的。
第 1章从数学建模到人工智能
1.1数学建模
1.1.1数学建模与人工智能1.1.2数学建模中的常见问题1.2人工智能下的数学1.2.1统计量1.2.2矩阵概念及运算1.2.3概率论与数理统计1.2.4高等数学——导数、微分、不定积分、定积分
第2章 Python快速入门
2.1安装Python
2.1.1Python安装步骤2.1.2IDE的选择2.2Python基本操作2.2.1第 一个小程序2.2.2注释与格式化输出2.2.3列表、元组、字典2.2.4条件语句与循环语句2.2.5break、continue、pass2.3Python高级操作2.3.1lambda2.3.2map2.3.3filter
第3章Python科学计算库NumPy
3.1NumPy简介与安装
3.1.1NumPy简介3.1.2NumPy安装3.2基本操作3.2.1初识NumPy3.2.2NumPy数组类型3.2.3NumPy创建数组3.2.4索引与切片3.2.5矩阵合并与分割3.2.6矩阵运算与线性代数3.2.7NumPy的广播机制3.2.8NumPy统计函数3.2.9NumPy排序、搜索3.2.10NumPy数据的保存
第4章常用科学计算模块快速入门
4.1Pandas科学计算库
4.1.1初识Pandas4.1.2Pandas基本操作4.2Matplotlib可视化图库4.2.1初识Matplotlib4.2.2Matplotlib基本操作4.2.3Matplotlib绘图案例4.3SciPy科学计算库4.3.1初识SciPy4.3.2SciPy基本操作4.3.3SciPy图像处理案例第5章Python网络爬虫5.1爬虫基础5.1.1初识爬虫5.1.2网络爬虫的算法5.2爬虫入门实战5.2.1调用API5.2.2爬虫实战5.3爬虫进阶—高效率爬虫5.3.1多进程5.3.2多线程5.3.3协程5.3.4小结
第6章Python数据存储
6.1关系型数据库MySQL
6.1.1初识MySQL6.1.2Python操作MySQL6.2NoSQL之MongoDB6.2.1初识NoSQL6.2.2Python操作MongoDB6.3本章小结6.3.1数据库基本理论6.3.2数据库结合6.3.3结束语
第7章Python数据分析
7.1数据获取
7.1.1从键盘获取数据7.1.2文件的读取与写入7.1.3Pandas读写操作7.2数据分析案例7.2.1普查数据统计分析案例7.2.2小结
第8章自然语言处理
8.1Jieba分词基础
8.1.1Jieba中文分词8.1.2Jieba分词的3种模式8.1.3标注词性与添加定义词8.2关键词提取8.2.1TF-IDF关键词提取8.2.2TextRank关键词提取8.3word2vec介绍8.3.1word2vec基础原理简介8.3.2word2vec训练模型8.3.3基于gensim的word2vec实战
第9章从回归分析到算法基础
9.1回归分析简介
9.1.1“回归”一词的来源9.1.2回归与相关9.1.3回归模型的划分与应用9.2线性回归分析实战9.2.1线性回归的建立与求解9.2.2Python求解回归模型案例9.2.3检验、预测与控制
第10章 从K-Means聚类看算法调参
10.1K-Means基本概述
10.1.1K-Means简介10.1.2目标函数10.1.3算法流程10.1.4算法优缺点分析10.2K-Means实战
第11章 从决策树看算法升级
11.1决策树基本简介
11.2经典算法介绍11.2.1信息熵11.2.2信息增益11.2.3信息增益率11.2.4基尼系数11.2.5小结11.3决策树实战11.3.1决策树回归11.3.2决策树的分类
第12章 从朴素贝叶斯看算法多变193
12.1朴素贝叶斯简介
12.1.1认识朴素贝叶斯12.1.2朴素贝叶斯分类的工作过程12.1.3朴素贝叶斯算法的优缺点12.23种朴素贝叶斯实战
第13章 从推荐系统看算法场景
13.1推荐系统简介
13.1.1推荐系统的发展13.1.2协同过滤13.2基于文本的推荐13.2.1标签与知识图谱推荐案例13.2.2小结
第14章 从TensorFlow开启深度学习之旅
14.1初识TensorFlow
14.1.1什么是TensorFlow14.1.2安装TensorFlow14.1.3TensorFlow基本概念与原理14.2TensorFlow数据结构14.2.1阶14.2.2形状14.2.3数据类型14.3生成数据十二法14.3.1生成Tensor14.3.2生成序列14.3.3生成随机数14.4TensorFlow实战
希望对你有帮助!!!
贵在坚持,自己掌握一些,在工作中不断打磨,高薪不是梦!!!