当前位置:首页 » 编程语言 » python进程join

python进程join

发布时间: 2023-04-21 22:36:09

⑴ 小白都看懂了,python 中的线程和进程精讲,建议收藏

目录

众所周知,CPU是计算机的核心,它承担了所有的计算任务。而操作系统是计算机的管理者,是一个大管家,它负责任务的调度,资源的分配和管理,统领整个计算机硬件。应用程序是具有某种功能的程序,程序运行与操作系统之上

在很早的时候计算机并没有线程这个概念,但是随着时代的发展,只用进程来处理程序出现很多的不足。如当一个进程堵塞时,整个程序会停止在堵塞处,并且如果频繁的切换进程,会浪费系统资源。所以线程出现了

线程是能拥有资源和独立运行的最小单位,也是程序执行的最小单位。一个进程可以拥有多个线程,而且属于同一个进程的多个线程间会共享该进行的资源

① 200 多本 Python 电子书(和经典的书籍)应该有

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且可靠的练手项目及源码)

④ Python基础入门、爬虫、网络开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)
私信我01即可获取大量Python学习资源

进程时一个具有一定功能的程序在一个数据集上的一次动态执行过程。进程由程序,数据集合和进程控制块三部分组成。程序用于描述进程要完成的功能,是控制进程执行的指令集;数据集合是程序在执行时需要的数据和工作区;程序控制块(PCB)包含程序的描述信息和控制信息,是进程存在的唯一标志

在Python中,通过两个标准库 thread 和 Threading 提供对线程的支持, threading 对 thread 进行了封装。 threading 模块中提供了 Thread , Lock , RLOCK , Condition 等组件

在Python中线程和进程的使用就是通过 Thread 这个类。这个类在我们的 thread 和 threading 模块中。我们一般通过 threading 导入

默认情况下,只要在解释器中,如果没有报错,则说明线程可用

守护模式:

现在我们程序代码中,有多个线程, 并且在这个几个线程中都会去 操作同一部分内容,那么如何实现这些数据的共享呢?

这时,可以使用 threading库里面的锁对象 Lock 去保护

Lock 对象的acquire方法 是申请锁

每个线程在操作共享数据对象之前,都应该申请获取操作权,也就是调用该共享数据对象对应的锁对象的acquire方法,如果线程A 执行了 acquire() 方法,别的线程B 已经申请到了这个锁, 并且还没有释放,那么 线程A的代码就在此处 等待 线程B 释放锁,不去执行后面的代码。

直到线程B 执行了锁的 release 方法释放了这个锁, 线程A 才可以获取这个锁,就可以执行下面的代码了

如:

到在使用多线程时,如果数据出现和自己预期不符的问题,就可以考虑是否是共享的数据被调用覆盖的问题

使用 threading 库里面的锁对象 Lock 去保护

Python中的多进程是通过multiprocessing包来实现的,和多线程的threading.Thread差不多,它可以利用multiprocessing.Process对象来创建一个进程对象。这个进程对象的方法和线程对象的方法差不多也有start(), run(), join()等方法,其中有一个方法不同Thread线程对象中的守护线程方法是setDeamon,而Process进程对象的守护进程是通过设置daemon属性来完成的

守护模式:

其使用方法和线程的那个 Lock 使用方法类似

Manager的作用是提供多进程共享的全局变量,Manager()方法会返回一个对象,该对象控制着一个服务进程,该进程中保存的对象运行其他进程使用代理进行操作

语法:

线程池的基类是 concurrent.futures 模块中的 Executor , Executor 提供了两个子类,即 ThreadPoolExecutor 和 ProcessPoolExecutor ,其中 ThreadPoolExecutor 用于创建线程池,而 ProcessPoolExecutor 用于创建进程池

如果使用线程池/进程池来管理并发编程,那么只要将相应的 task 函数提交给线程池/进程池,剩下的事情就由线程池/进程池来搞定

Exectuor 提供了如下常用方法:

程序将 task 函数提交(submit)给线程池后,submit 方法会返回一个 Future 对象,Future 类主要用于获取线程任务函数的返回值。由于线程任务会在新线程中以异步方式执行,因此,线程执行的函数相当于一个“将来完成”的任务,所以 Python 使用 Future 来代表

Future 提供了如下方法:

使用线程池来执行线程任务的步骤如下:

最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

也可以低于 CPU 核心数

使用线程池来执行线程任务的步骤如下:

关于进程的开启代码一定要放在 if __name__ == '__main__': 代码之下,不能放到函数中或其他地方

开启进程的技巧

开启进程的数量最好低于最大 CPU 核心数

⑵ join函数python

join函数python就是把一个list中所有的串按照你定义的分隔符连接起来。

join是string类型的一个函数,用调用他睁庆的字符串去连接参数里的列表,python里面万物皆对象,调用join函数,将后面的列表里的值用逗号连接成新的字符串。str(i)foriinlist这是一个映射,就是把list中每个值都转换成字符串。

含义

python中得thread的一些机制和C/C++不同:在C/C++中,主线程结束后,其子线程会默认被主线程kill掉。而在python中,主线程结束后,会默认等待子线程结束后,主线程才退出。

python对于thread的管理中有两个函数:join和setDaemon。

join:如在一个线程B中调悉敬握用threada。join(),则threada结束后,线程B才会接着threada。join()往后运行。

setDaemon:主线程A启动了子线程B,调用b。setDaemaon(True),则主线程结束时,稿锋会把子线程B也杀死,与C/C++中得默认效果是一样的。

⑶ Python的多进程模块multiprocessing

众所周知,Python中不存在真正的多线程,Python中的多线程是一个并发过程。如果想要并行的执行程序,充分的利用cpu资源(cpu核心),还是需要使用多进程解决的。其中multiprocessing模块应该是Python中最常用的多进程模块了。

基本上multiprocessing这个模块和threading这个模块用法是相同的,也是可以通过函数和类创建进程。

上述案例基本上就是笔者搬用了上篇文章多线程的案例,可见其使用的相似之处。导入multiprocessing后实例化Process就可以创建一个进程,参数的话也是和多线程一样,target放置进程执行函数,args存放该函数的参数。

使用类来创建进程也是需要先继承multiprocessing.Process并且实现其init方法。

Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求。

但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程。

需要注意的是,在调用join方法阻塞进程前,需要先调用close方法,,否则程序会出错。

在上述案例中,提到了非阻塞,当把创建进程的方法换为pool.apply(func, (msg,))时,就会阻塞进程,出现下面的状况。

在multiprocessing模块中还存在Queue对象,这是一个进程的安全队列,近似queue.Queue。队列一般也是需要配合多线程或者多进程使用。

下列案例是一个使用进程队列实现的生产者消费者模式。

multiprocessing支持两种进程间的通信,其中一种便是上述案例的队列,另一种则称作管道。在官方文档的描述中,multiprocessing中的队列是基于管道实现的,并且拥有更高的读写效率。

管道可以理解为进程间的通道,使用Pipe([plex])创建,并返回一个元组(conn1,conn2)。如果plex被置为True(默认值),那么该管道是双向的,如果plex被置为False,那么该管道是单向的,即conn1只能用于接收消息,而conn2仅能用于发送消息。

其中conn1、conn2表示管道两端的连接对象,每个连接对象都有send()和recv()方法。send和recv方法分别是发送和接受消息的方法。例如,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。

关于multiprocessing模块其实还有很多实用的类和方法,由于篇幅有限(懒),笔者就先写到这里。该模块其实用起来很像threading模块,像锁对象和守护线程(进程)等multiprocessing模块也是有的,使用方法也近乎相同。

如果想要更加详细的了解multiprocessing模块,请参考官方文档。

⑷ Python threading 中join()的作用

Python中join()的作用:(菜鸟网络) join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生
看着定义大致明白,但是自己确不好理解。主要的功能就是多线程的线程独占,让此时只有一个线程运行。

1.子线程为什么需要join?
join阻塞主线程,可以让主线程获得子线程的处理结果。
如果没有join,由于子线程sleep,尚未append到tmp_list,例子中print tmp_list为空列表,join后即能在append执行后print出来。
如果不需要子线程的处理结果,那么可以不join,当然join了也没啥影响。
2.为什么要写成for循环join的形式?
这个在上文方式二中即提出了,可以即让子线程异步执行,又让主线程等待结果。

⑸ Python入门系列(十二)——GUI+多进程

话说,python做图形界面并不明智,效率并不高。但在某些特殊需求下还是需要我们去使用,所以python拥有多个第三方库用以实现GUI,本章我们使用python基本模块tkinter进行学习,因为需求并不大,所以不做太多拓展。
继续改写上一章的IP查询系统(= =,要玩烂了),首先略改下IpWhere.py以备调用~

然后使用tkinter模块进行图形界面的实现,调用预编译的IpWhere模块 :

额,太丑了,但基本实现我们小小的需求,在以后的py学习中,我们再涉及其他的第三方模块,此处就当是入门了解吧。

十分抱歉把这么重要的内容放在最后,要不是大佬指点,此次学习可能就要错过多进程的问题了。
Unix系统提供了forx,python可借助os模块调用,从而实现多进程,然而windows系统并不具备,所以我们选择python内置的multiprocessing多进程模块进行学习。

首先我们借助直接调用多进程来改写下我们在多线程章节用到的例子!

显然,这么写实在太蠢了,如果我们的任务量巨大,这并不合适。所以我们引入了进程池的概念,使用进程池进行改写:

在此,我们可以看到所有进程是并发执行的,同样,我们在多线程章节就讲过,主进程的结束意味着程序退出,所以我们需要借助join()方法堵塞进程。

我们知道线程共享内存空间,而进程的内存是独立的,同一个进程的线程之间可以直接交流,也就带来了线程同步的苦恼,这个我们在多线程章节已经讲过了;而两个进程想通信,则必须通过一个中间代理来实现,即我们接下来的内容:进程间通信。

进程之间肯定是需要通信的,操作系统提供了很多机制来实现进程间的通信。Python的multiprocessing模块包装了底层的机制,提供了Queue、Pipes等多种方式来交换数据。我们接下来就以Queue的方式进行学习。

Queue.Queue是进程内非阻塞队列,multiprocess.Queue是跨进程通信队列,前者是各自私有,后者是各子进程共有。

还有一个在后者基础上进行封装的multiprocess.Manager.Queue()方法,如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息: RuntimeError: Queue objects should only be shared between processes through inheritance.

接下来我们就借助进程池来进行多进程操作的改写,感谢大佬一路辅导。

我们可以看到两个子线程先执行,然后一个子线程单独执行,此处有意而为之,让大家更清晰的了解队列的使用。期间有一处我们放弃使用jion()方法堵塞,而是自己写了个循环堵塞,大家根据自己习惯来就好。

话说,真的没人吐槽么?上面的例子从需求上来讲,完全就不需要多线程好不好!emmmm,我们来点实力拓展,写一个有智商的多线程脚本,顺便结合上一节的web来一个综合篇,随便找个现实需求吧!

emmm,比如我们来到当当网买书,搜一下我们想要的书籍,发现!!太多了!!真J2乱!!看不过来!!不想翻页!!直接告诉我哪个便宜、哪个牛逼好不好!!

简单看下这个url:
http://search.dangdang.com/?key=渗透测试&ddsale=1&page_index=2
其中ddsale参数代表当当自营,page_index代表页数,key代表搜索内容,我们本次的变量只有页数。

所以我们构造请求的url为:
'http://search.dangdang.com/?key=渗透测试&ddsale=1&page_index='+str(page)
如果修改的内容不使用str字符串转化,会收到如下报错:
TypeError: can only concatenate str (not "int") to str
然后我们看一下页面内容的分布情况,本次我们关心卖什么书,卖多少钱?

对应的编写我们的正则匹配规则,当然了,有更简便的第三方库可以帮我们处理,但为了更好的形成流程性认识,我们这里依然使用正则。
我们对应我们需要的书籍名称和当前价格匹配如下:
<a title=" (.*?)" ddclick=
<span class="search_now_price">¥(.*?)</span>
那么,思路理清了,我们就开始使用多线程来写我们的小系统~

然后我们去查看一下我们的结果文件~

现在这个小系统具备的功能就是根据用户需要选择要检索的书籍,然后整理下名称和价格,开了10个线程,如果小伙伴pc给力的话可以继续加。简单的异常处理机制和界面交互,基本满足日常所需。

⑹ python进程和线程中的join方法

python中创建进程的方式
一、Process(target=函数名,args=(),name,kwargs)
target:加进程调用的函数名,一般不加括号
name:进程的名字
kwargs:字典参数
args:元组参数,如果参数就一个,记得加逗号’,’空察

Python多线程与多进程中join()方法的效果是相同的

join所完成的工作就是线程同步,即主线程任务结束之后,进入阻塞状态友渣,一好亏悄直等待其他的子线程执行结束之后,主线程再终止
import threading
import time

⑺ python threading 一定要 join 吗

Join的作用是众所周知的,阻塞进程直到线程执行完毕。通用的做法是我们启动一批线程,最后join这些线程结束,例如:

foriinrange(10):
t=ThreadTest(i)
thread_arr.append(t)

foriinrange(10):
thread_arr[i].start()

foriinrange(10):
thread_arr[i].join()


此处join的原理就是依次检验线程池中的线程是否结束,没有结束就阻塞直到线程结束,如果结束则跳转执行下一个线程的join函数。


而py的join函数还有一个特殊的功能就是可以设置超时,如下:

Thread.join([timeout])

Wait until the thread terminates. This blocks the calling thread until the thread whosejoin()method is called terminates – either normally or through an unhandled exception – or until the optional timeout occurs.


也就是通过传给join一个参数来设置超时,也就是超过指定时间join就不在阻塞进程。而在实际应用测试的时候发现并不是所有的线程在超时时间内都结束的,而是顺序执行检验是否在time_out时间内超时,例如,超时时间设置成2s,前面一个线程在没有完成的情况下,后面线程执行join会从上一个线程结束时间起再设置2s的超时。

⑻ python 多进程

基于官方文档:
https://docs.python.org/zh-cn/3/library/multiprocessing.html
日乐购,刚才看到的一个博客,写的都不太对,还是基于官方的比较稳妥
我就是喜欢抄官方的,哈哈

通常我们使用Process实例化一个进程,并调用 他的 start() 方法启动它。
这种方法和 Thread 是一样的。

上图中,我写了 p.join() 所以主进程是 等待 子进程执行完后,才执行 print("运行结束")
否则就是反过来了(这个不一定,看你的语句了,顺序其实是随机的)例如:

主进加个 sleep

所以不加join() ,其实子进程和主进程是各干各的,谁也不等谁。都执行完后,文件运行就结束了

上面我们用了 os.getpid() 和 os.getppid() 获取 当前进程,和父进程的id
下面就讲一下,这两个函数的用法:
os.getpid()
返回当前进程的id
os.getppid()
返回父进程的id。 父进程退出后,unix 返回初始化进程(1)中的一个
windows返回相同的id (可能被其他进程使用了)
这也就解释了,为啥我上面 的程序运行多次, 第一次打印的parentid 都是 14212 了。
而子进程的父级 process id 是调用他的那个进程的 id : 1940

视频笔记:
多进程:使用大致方法:

参考: 进程通信(pipe和queue)

pool.map (函数可以有return 也可以共享内存或queue) 结果直接是个列表

poll.apply_async() (同map,只不过是一个进程,返回结果用 xx.get() 获得)

报错:

参考 : https://blog.csdn.net/xiemanR/article/details/71700531

把 pool = Pool() 放到 if name == " main ": 下面初始化搞定。
结果:

这个肯定有解释的

测试多进程计算效果:
进程池运行:

结果:

普通计算:

我们同样传入 1 2 10 三个参数测试:

其实对比下来开始快了一半的;
我们把循环里的数字去掉一个 0;
单进程:

多进程:

两次测试 单进程/进程池 分别为 0.669 和 0.772 几乎成正比的。
问题 二:
视图:
post 视图里面

Music 类:

直接报错:

写在 类里面也 在函数里用 self.pool 调用也不行,也是相同的错误。

最后 把 pool = Pool 直接写在 search 函数里面,奇迹出现了:

前台也能显示搜索的音乐结果了

总结一点,进程这个东西,最好 写在 直接运行的函数里面,而不是 一个函数跳来跳去。因为最后可能 是在子进程的子进程运行的,这是不许的,会报错。
还有一点,多进程运行的函数对象,不能是 lambda 函数。也许lambda 虚拟,在内存??

使用 pool.map 子进程 函数报错,导致整个 pool 挂了:
参考: https://blog.csdn.net/hedongho/article/details/79139606
主要你要,对函数内部捕获错误,而不能让异常抛出就可以了。

关于map 传多个函数参数
我一开始,就是正常思维,多个参数,搞个元祖,让参数一一对应不就行了:

报错:

参考:
https://blog.csdn.net/qq_15969343/article/details/84672527
普通的 process 当让可以穿多个参数,map 却不知道咋传的。
apply_async 和map 一样,不知道咋传的。

最简单的方法:
使用 starmap 而不是 map

结果:
子进程结束
1.8399453163146973
成功拿到结果了

关于map 和 starmap 不同的地方看源码:

关于apply_async() ,我没找到多参数的方法,大不了用 一个迭代的 starmap 实现。哈哈

关于 上面源码里面有 itertools.starmap
itertools 用法参考:
https://docs.python.org/zh-cn/3/library/itertools.html#itertool-functions

有个问题,多进程最好不要使用全部的 cpu , 因为这样可能影响其他任务,所以 在进程池 添加 process 参数 指定,cpu 个数:

上面就是预留了 一个cpu 干其他事的

后面直接使用 Queue 遇到这个问题:

解决:
Manager().Queue() 代替 Queue()

因为 queue.get() 是堵塞型的,所以可以提前判断是不是 空的,以免堵塞进程。比如下面这样:
使用 queue.empty() 空为True

⑼ python多进程报错load_eof

python 多进程报错(创建运行多进程)

简单说一下python的多进程包multiprocessing。借助这个唤仿包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

创建进程的类:Process([group [, target [, name [, args [, kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。

属性:authkey、daemon(要通和败纤过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。

1.当我们希望使用python创建一个多进程运行时,碰到下面的报错提示:

2.解决的方法很简单,只需要将你的代码放到 if __name__ == "__main__"枯乱下面,如下图:

3.下面是测试多进程运行的程序。

import time
import random
from multiprocessing import Process

def run(name):
print(f' 开始运行 {name} 进程...')
# 睡眠一个1~5的随机数,做进程对比
time.sleep(random.randrange(1,5))
print(f' {name} 进程运行结束。')

if __name__ == "__main__":
p1 = Process(target=run, args=('my_jcy',)) # 必须加,号
p2 = Process(target=run, args=('my_mm',)) # 必须加,号
p1.start()
p2.start()
print('这里是主进程,已结束!')

⑽ Python:进程(threading)

这里是自己写下关于 Python 跟进程相关的 threading 模块的一点笔记,跟有些跟 Linux 调用挺像的,有共通之处。

https://docs.python.org/3/library/threading.html?highlight=threading#thread-objects

直接传入

继承 Thread 重写 run 方法

threading.Thread(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)

group 线程组,未实现

start() 线程就绪
join([timeout]) 阻塞其他线程,直到调用这方法的进程结束或时间到达

RuntimeError: cannot join thread before it is started

get/setName(name) 获取/设置线程名。
isAlive() 返回线程是否在运行。
is/setDaemon(bool): 获取/设置是后台线程(默认前台线程(False))。(在start之前设置)

The entire Python program exits when no alive non-daemon threads are left.
没有非后台进程运行,Python 就退出。
主线程执行完毕后,后台线程不管是成功与否,主线程均停止

t.start()
t.join()
start() 后 join() 会顺序执行,失去线程意义

https://docs.python.org/3/library/threading.html?#lock-objects

Lock属于全局,Rlock属于线程(R的意思是可重入,线程用Lock的话会死锁,来看例子)

acquire(blocking=True, timeout=-1) 申请锁,返回申请的结果
release() 释放锁,没返回结果

https://docs.python.org/3/library/threading.html#condition-objects

可以在构造时传入rlock lock实例,不然自己生成一个。

acquire([timeout])/release(): 与lock rlock 相同
wait([timeout]): 调用这个方法将使线程进入等待池,并释放锁。调用方法前线程必须已获得锁定,否则将抛出异常。
notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。调用方法前线程必须已获得锁定,否则将抛出异常。
notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

threading.Semaphore(value=1)

https://docs.python.org/3/library/threading.html#semaphore-objects

acquire(blocking=True, timeout=None)
资源数大于0,减一并返回,等于0时等待,blocking为False不阻塞进程
返回值是申请结果
release()
资源数加1

https://docs.python.org/3/library/threading.html#event-objects

事件内置了一个初始为False的标志

is_set() 返回内置标志的状态
set() 设为True
clear() 设为False
wait(timeout=None) 阻塞线程并等待,为真时返回。返回值只会在等待超时时为False,其他情况为True

https://docs.python.org/3/library/threading.html#timer-objects

threading.Timer(interval, function, args=None, kwargs=None)

第一个参数是时间间隔,单位是秒,整数或者浮点数,负数不会报错直接执行不等待
可以用cancel() 取消

https://docs.python.org/3/library/threading.html#barrier-objects

threading.Barrier(parties, action=None, timeout=None)

调用的进程数目达到第一个设置的参数就唤醒全部进程

wait(timeout=None)
reset() 重置,等待中的进程收到 BrokenBarrierError 错误

热点内容
大激战脚本 发布:2024-11-01 18:35:25 浏览:110
中国大学mooc密码要求是什么 发布:2024-11-01 18:33:45 浏览:816
jrtplib编译 发布:2024-11-01 18:06:01 浏览:226
java代码中if 发布:2024-11-01 18:02:40 浏览:378
android定时刷新 发布:2024-11-01 17:59:43 浏览:999
炎黄解说我的世界服务器生存 发布:2024-11-01 17:59:42 浏览:542
如何清楚网页缓存 发布:2024-11-01 17:53:58 浏览:552
linux文件权限不够 发布:2024-11-01 17:53:19 浏览:917
c语言中10是什么意思 发布:2024-11-01 17:45:08 浏览:892
装棉衣压缩袋 发布:2024-11-01 17:37:18 浏览:297