sqlonspark
㈠ Spark SQL(十):Hive On Spark
Hive是目前大数据领域,事实上的SQL标准。其底层默认是基于MapRece实现的,但是由于MapRece速度实在比较慢,因此这几年,陆续出来了新的SQL查询引擎,包括Spark SQL,Hive On Tez,Hive On Spark等。
Spark SQL与Hive On Spark是不一样的。Spark SQL是Spark自己研发出来的针对各种数据源,包括Hive、JSON、Parquet、JDBC、RDD等都可以执行查询的,一套基于Spark计算引擎的查询引擎。因此它是Spark的一个项目,只不过提供了针对Hive执行查询的工功能而已,适合在一些使用Spark技术栈的大数据应用类系统中使用。
而Hive On Spark,是Hive的一个项目,它是将Spark作为底层的查询引擎(不通过MapRece作为唯一的查询引擎)。Hive On Spark,只适用于Hive,在可预见的未来,很有可能Hive默认的底层引擎就从MapRece切换为Spark了;适合于将原有的Hive数据仓库以及数据统计分析替换为Spark引擎,作为全公司通用的大数据统计分析引擎。
Hive On Spark做了一些优化:
1、Map Join
Spark SQL默认对join是支持使用broadcast机制将小表广播到各个节点上,以进行join的。但是问题是,这会给Driver和Worker带来很大的内存开销。因为广播的数据要一直保留在Driver内存中。所以目前采取的是,类似乎MapRece的Distributed Cache机制,即提高HDFS replica factor的复制因子,以让数据在每个计算节点上都有一个备份,从而可以在本地进行数据读取。
2、Cache Table
对于某些需要对一张表执行多次操作的场景,Hive On Spark内部做了优化,即将要多次操作的表cache到内存中,以便于提升性能。但是这里要注意,并不是对所有的情况都会自动进行cache。所以说,Hive On Spark还有很多不完善的地方。
Hive QL语句 =>
语法分析 => AST =>
生成逻辑执行计划 => Operator Tree =>
优化逻辑执行计划 => Optimized Operator Tree =>
生成物理执行计划 => Task Tree =>
优化物理执行计划 => Optimized Task Tree =>
执行优化后的Optimized Task Tree
㈡ Spark SQL可以读取HBase吗
Spark SQL就是shark ,也就是SQL on Spark。如果没记错的话,shark的开发利用了hive的API,所以支持读取HBase。而且Spark的数据类型兼容范围大于Hadoop,并且包含了Hadoop所支持的任何数据类型。