当前位置:首页 » 编程语言 » python粒子群

python粒子群

发布时间: 2023-04-19 01:01:53

python有没有粒子群算法

scikit-opt调研过很多粒子群算法包,这个是最好用的了

定义你的目标函数

defdemo_func(x):
x1,x2,x3搏山=x
并磨returnx1**2+(x2-0.05)**2+x3**2

调用算法进行优化求绝银斗解

pso=PSO(func=demo_func,dim=3)
fitness=pso.fit()

⑵ Metropolis法和Metropolis-Hastings法有什么区别吗各自的优点是什么呢感谢大神

原文链接:http://tecdat.cn/?p=19664

MCMC是从复杂概率模型中采样的通用技术。

  • 蒙特卡洛

  • 马尔可夫链

  • Metropolis-Hastings算法

  • 问题

    如果需要计算有复杂后验pdf p(θ| y)的随机变量θ的函数f(θ)的平均值或期望值。

    最受欢迎的见解

    1.用R语言模拟混合制排队随机服务排队系统

    2.R语言中使用排队论预测等待时间

    3.R语言中实现马尔可夫链蒙特卡罗MCMC模型

    4.R语言中的马尔科夫机制转换(Markov regime switching)模型

    5.matlab贝叶斯隐马尔可夫hmm模型

    6.用R语言模拟混合制排队随机服务排队系统

    7.Python基于粒子群优化的投资组合优化

    8.R语言马尔可夫转换模型研究交通伤亡人数事故预测

    9.用机器学习识别不断变化的股市状况——隐马尔可夫模型的应用

⑶ 学习多目标优化需要掌握哪些python知识

多目标优化

目标优化问题一般地就是指通过一定的优化算法获得目标函数的最优化解。当优化的目标函数为一个时称之为单目标优化(Single-
objective Optimization Problem,
SOP)。当优化的目标函数有两个或两个以上时称为多目标优化(Multi-objective Optimization Problem,
MOP)。不同于单目标优化的解为有限解,多目标优化的解通常是一组均衡解。

多目标优化算法归结起来有传统优化算法和智能优化算法两大类。
1. 传统优化算法包括加权法、约束法和线性规划法等,实质上就是将多目标函数转化为单目标函数,通过采用单目标优化的方法达到对多目标函数的求解。
2. 智能优化算法包括进化算法(Evolutionary Algorithm, 简称EA)、粒子群算法(Particle Swarm Optimization, PSO)等。

Pareto最优解:

若x*∈C*,且在C中不存在比x更优越的解x,则称x*是多目标最优化模型式的Pareto最优解,又称为有效解。
一般来说,多目标优化问题并不存在一个最优解,所有可能的解都称为非劣解,也称为Pareto解。传统优化技术一般每次能得到Pareo解集中的一个,而
用智能算法来求解,可以得到更多的Pareto解,这些解构成了一个最优解集,称为Pareto最优解。它是由那些任一个目标函数值的提高都必须以牺牲其
他目标函数值为代价的解组成的集合,称为Pareto最优域,简称Pareto集。

Pareto有效(最优)解非劣解集是指由这样一些解组成的集合:与集合之外的任何解相比它们至少有一个目标函数比集合之外的解好。

求解多目标优化问题最有名的就是NSGA-II了,是多目标遗传算法,但其对解的选择过程可以用在其他优化算法上,例如粒子群,蜂群等等。这里简单介绍一下NSGA-II的选择算法。主要包含三个部分:
1. 快速非支配排序
要先讲一下支配的概念,对于解X1和X2,如果X1对应的所有目标函数都不比X2大(最小问题),且存在一个目标值比X2小,则X2被X1支配。
快速非支配排序是一个循环分级过程:首先找出群体中的非支配解集,记为第一非支配层,irank=1(irank是个体i的非支配值),将其从群体中除去,继续寻找群体中的非支配解集,然后irank=2。
2. 个体拥挤距离
为了使计算结果在目标空间比较均匀的分布,维持种群多样性,对每个个体计算拥挤距离,选择拥挤距离大的个体,拥挤距离的定义为:
L[i]d=L[i]d+(L[i+1]m−L[i−1]m)/(fmaxm−fminm)
L[i+1]m是第i+1个个体的第m目标函数值,fmaxm 和 fminm是集合中第m个目标函数的最大和最小值。
3. 精英策略选择
精英策略就是保留父代中的优良个体直接进入子代,防止获得的Pareto最优解丢失。将第t次产生的子代种群和父代种群合并,然后对合并后的新种群进行非支配排序,然后按照非支配顺序添加到规模为N的种群中作为新的父代。

⑷ 如何评价国赛和美赛的获奖难度

数学建模竞赛(国赛和美赛)经验分享
第一次参赛是在大一的暑假参加的国赛,当时和两个同学刚刚组队,我们也没有什么基础,结果可想而知:无奖。在经历了这一次国赛之后,大一时的两位队友也无心再参加,所以又重新找了两位队友。从此我们队伍成员便确认了下来。这两位分别是一名女生负责排版,一名男生负责建模;而我负责写程序。我们一起准备第二年的国赛,在这期间,我们学校决定自己组织一次建模比赛为国赛做铺垫。我们为了检验自己的学习成果,便参加了。凭借着很好的运气,我们拿了二等奖的好成绩。时间不久,便到了国赛。在国赛期间,我们每天熬夜熬到很晚,有了一点想法之后就开始讨论,然后发现行不通,又开始讨论,再进行完善……就这么一直反反复复着。直到提交了论文的最后#在找队友的时候,一定要找靠谱的,自己熟悉的,千万不要临时组队。在准备竞赛这段时间,要经常沟通,彼此磨合,培养默契。在参加竞赛的时候,不免会讨论得过于激烈,千万不要烦彼此,因为只有交流彼此得思想才会进行碰撞,才有可能找到适合本队得解题办法。在分工方面,建议有一个人主要负责建模,一个主要负责编程,一个主要负责写论文和排版。三个人对建模、编程、排版都要了解,因为不知竞赛得的时候会有谁的工作量大一些,另外的人还可以去帮忙。三样都懂一些也可以更好的交流,更好的完成作品。

在准备建模比赛期间,要先了解常见的模型,比如:层次分析法,微分方程模型,线性规划、非线性规划和整数规划等。如果感觉自己不能完全吃透,可以先进行了解,在实际竞赛的过程中会查阅大量的资料,在短时间内去了解一个未知的领域,借鉴经典模型并进行完善,做出适合本问题的模型。下面推荐几本书:第一本是《数学模型》:

《数学模型》这本书很经典,讲了很多的经典模型。

第二本是《matlab在数学建模中的应用》;

第三本书是《数学建模算法与应用》。

负责编程的人至少要有一门自己擅长的编程语言,如MATLAB,Python等。建模过程中大部分人都是用MATLAB,但是也有不少人使用Python。MATLAB的工具包比较多,使用的人比较多。Python的话是库比较多。我个人是比较喜欢使用python的,但是Matlab也会一些。在平常的学习中要找到适合本队的题目,是数据分析题,还是优化的题目等。如果选择数据分析的话,就要对数据分析比较了解,需要掌握数据如何可视化,选什么图,才能更能够刻画数据的特点。如果不知道选择什么种类的图,可以参照下面的图:

还要熟悉数据处理的一些软件,如Excel,SPSS,python的某些库等。

当然算法是少不了的,如果时间紧,可以了解大概,明白算法的框架,常用算法有:常用的聚类算法、遗传算法、蚁群算法、粒子群算法、元胞自动机等。

排版是很重要的,能够给人第一印象,好的排版能给人带来美的享受。 有人使用Word来进行排版,那么就要学会Mathtype公式编辑器的使用;如果使用Latex进行排版,要好好学习语法,可以找找模板。论文中的流程图建议使用Visio来画。在学习排版的过程中,可以先大体看一下往年优秀论文的排版,学习学习。比如西文和数字使用Times New Roman字体会比较好看,又如自己去 探索 正文的行距是多少会感觉比较美观,三线表的磅数是多少会自己会感觉比较美观等。

不知道,你所说的赛是什么比赛,我比较熟悉的是大学生数学建模竞赛。在本科期间国赛和美赛都参加了两次,且获得了不错的成绩,特别在有了丰富经验以后,在最后一次美赛中,获得了最高奖(O奖)。

相比而言,美赛更难,原因如下:

其实这两个比赛的最大不同就是语言,还有不同就是在于背景不同。

国赛是以国内的实际问题为背景,关于其资料查询方便,阅读起来轻松快捷,但是问题都是一些新颖问题,没有现成答案,所以还是有难度。而美赛背景是美国文化,你得先搞清楚背景,然而国外资料也不易找到,并且文献全是英文,查阅起来不方便,速度迟缓。

另一方面语言不同,对于国赛,只要你弄出来,很快能写好。但是美赛,你把问题弄明白,还得转化为地道的英语,这是有技术含量的,这需要能力加时间。

另外,美赛有很多国家参加,而国赛参赛人数比较少,并且很多厉害的大学基本不参加国赛而是参加美赛,所以美赛是参赛人数多,质量高。美赛是四天三夜而国赛是三天两夜。综上,美赛更难!

⑸ 如何理解贝叶斯估计

根据贝叶斯公式,进行统计推断,
在垃圾邮件分类方面应用很广,方法简单,具有很好的稳定性和健壮性

热点内容
老款卡罗拉自动挡有哪些配置 发布:2024-11-01 20:34:06 浏览:570
android图片判断 发布:2024-11-01 20:34:03 浏览:267
怎么给自己手机写一个脚本 发布:2024-11-01 20:23:41 浏览:241
c语言大小写判断 发布:2024-11-01 20:21:53 浏览:130
php的点餐系统源码 发布:2024-11-01 20:13:53 浏览:714
拜占庭算法 发布:2024-11-01 20:10:31 浏览:357
xcode编译参数 发布:2024-11-01 20:00:04 浏览:665
苹果5怎么设置密码锁屏 发布:2024-11-01 19:54:55 浏览:124
宝塔上传文件夹 发布:2024-11-01 19:39:50 浏览:257
java云编译器 发布:2024-11-01 19:34:24 浏览:385