当前位置:首页 » 编程语言 » pythonbokeh

pythonbokeh

发布时间: 2023-04-18 17:16:06

python制作分布图

制作分布图类似密度图,在python中利用pandas来提取分布数据是比较方便的。主要用到pandas的cut和groupby等裂脊函数。

官方文档链接

主要参数为x和bins。
x为数据源,数组格式的都支持,list,numpy.narray, pandas.Series。
bins可以为int,也可以为序列。

我们凳桐定义bins为一个序列,默认为左开右闭的区间:

对言值列按cats做groupby,然后调用get_stats统计函数,再用unstack函数将层次化的行索引“展开”为列。

G2在之前的文章中有介绍,文章 《python结合G2绘制精枣源坦美图形》 。

一句话绘制出来,但具体的区间段难以区分出来。

bokeh是python的一个优秀的绘图工具包,与pandas结合的比较好。 bokeh文档

作者原文链接: python制作分布图

❷ Python使用bokeh及folium实现地理位置信息的交互可视化

Talk is cheap,show U the code!

不带控件全山埋部显示分类点


全部数据

部分数据

卫星地图

civilpy:Python加载basemap绘制慎悉分省地图 1 赞同 · 1 评论文章宽唯乎



❸ Python中除了matplotlib外还有哪些数据可视化的库

python数据可视化库有很多,其中这几个最常见:

第一个:Matplotlib
Matplotlib是python中众多数据可视化库的鼻祖,其设计风格与20世纪80年代设计的皮轿商业化程序语言MATLAB十分接近,具有很多强大且复并握衡杂的可视化功能。Matplotlib包含多种类型的API,可以采用多种方式绘制图表并对图表进行定制。
第二个:Seaborn
Seaborn是基于Matplotlib进行高级封装的可视化库,它支持交互式界面,使绘制图表的功能变得更简单,且图表的色彩更具吸引力,可以画出丰富多样的统计图表。
第三个:Bokeh
Bokeh是一个交互式的可视化库,支持使用Web浏览器展示,可使用快速简单的方式将大型数据集转换成高性能的、可交互的绝做、结构简单的图表。
第四个:Pygal
Pygal是一个可缩放矢量图表库,用于生成可在浏览器中打开的SVG格式的图表,这种图表能够在不同比例的屏幕上自动缩放,方便用户交互。
第五个:Pyecharts
Pyecharts是一个生成ECharts的库,生成的ECharts凭借良好的交互性、精巧的设计得到了众多开发者的认可。

❹ 探讨最受欢迎的15顶级Python库

1 TensorFlow(贡献者:1757,贡献:25756,Stars:116765)

“TensorFlow 是一个使用数据流图进行数值计算的开源软件库。图形节点表示数学运算,而图形边缘表示在它们之间流动的多维数据阵列(张量)。这种灵活的体系结构使用户可以将计算部署到桌面、服务器或移动设备中的一个或多个 CPU/GPU,而无需重写代码。 ”

GitHub 地址:

https://github.com/tensorflow/tensorflow

2 pandas(贡献者:1360,贡献:18441,Stars :17388)

“pandas 是一个 Python 包,、供快速,灵活和富有表现力的数据结构,旨在让”关系“或”标记“数据使用既简单又直观。它的目标是成为用 Python 进行实际,真实数据分析的基础高级构建块。”

GitHub 地址:

https://github.com/pandas-dev/pandas

3 scikit-learn(贡献者:1218,贡献者:23509,Stars :32326)

“scikit-learn 是一个基于 NumPy,SciPy 和 matplotlib 的机器学习 Python 模块。它为数据挖掘和数据分析提供了简单而有效的工具。SKLearn 所有人都可用,并可在各种环境中重复使用。

GitHub 地址:

https://github.com/scikit-learn/scikit-learn

4 PyTorch(贡献者:861,贡献:15362,Stars:22763)

“PyTorch 是一个 Python 包,提供两个高级功能:

具有强大的 GPU 加速度的张量计算(如 NumPy)

基于磁带的自动编程系统构建的深度神经网络

你可以重复使用自己喜欢的 Python 软件包,如 NumPy,SciPy 和 Cython,以便在需要时扩展 PyTorch。”

GitHub 地址:

https://github.com/pytorch/pytorch

5 Matplotlib(贡献者:778,贡献:28094,Stars :8362)

“Matplotlib 是一个 Python 2D 绘图库,可以生成各种可用于出版品质的硬拷贝格式和跨平台交互式环境数据。Matplotlib 可用于 Python 脚本,Python 和 IPython shell(例如 MATLAB 或 Mathematica),Web 应用程序服务器和各种图形用户界面工具包。”

GitHub 地址:

https://github.com/matplotlib/matplotlib

6 Keras(贡献者:856,贡者:4936,Stars :36450)

“Keras 是一个高级神经网络 API,用 Python 编写,能够在 TensorFlow,CNTK 或 Theano 之上运行。它旨在实现快速实验,能够拍尘以最小袭巧禅的延迟把想法变成结果,这是进行研究的关键。”

GitHub 地址:

https://github.com/keras-team/keras

7 NumPy(贡献者:714,贡献:19399,Stars:9010)

“NumPy 是使用 Python 进行科学计算所需的基础包。它提供了强大的 N 维数组对象,复杂的(广播)功能,集成 C / C ++ 和 Fortran 代码的工具以及有用的线性代数,傅里叶变换和随机数功能。

GitHub 地址:

https://github.com/numpy/numpy

8 SciPy(贡献者:676,贡献:20180,Stars:5188)

“SciPy(发音为”Sigh Pie“)是数学、科学和工程方向的开源软件,包含统计、优化、集成、线性代数、傅立叶变换、信号和图像处理、ODE 求解器等模块。”

GitHub 地址:

https://github.com/scipy/scipy

9 Apache MXNet(贡献者:653,贡献:9060,Stars:15812)

“Apache MXNet(孵宽昌化)是一个深度学习框架,旨在提高效率和灵活性,让你可以混合符号和命令式编程,以最大限度地提高效率和生产力。 MXNet 的核心是一个动态依赖调度程序,可以动态地自动并行化符号和命令操作。”

GitHub 地址:

https://github.com/apache/incubator-mxnet

10 Theano(贡献者:333,贡献:28060,Stars :8614)

“Theano 是一个 Python 库,让你可以有效地定义、优化和评估涉及多维数组的数学表达式。它可以使用 GPU 并实现有效的符号区分。”

GitHub 地址:

https://github.com/Theano/Theano

11 Bokeh(贡献者:334,贡献:17395,Stars :8649)

“Bokeh 是一个用于 Python 的交互式可视化库,可以在现代 Web 浏览器中实现美观且有意义的数据视觉呈现。使用 Bokeh,你可以快速轻松地创建交互式图表、仪表板和数据应用程序。”

GitHub 地址:

https://github.com/bokeh/bokeh

12 XGBoost(贡献者:335,贡献:3557,Stars:14389)

“XGBoost 是一个优化的分布式梯度增强库,旨在变得高效、强大、灵活和便携。它在 Gradient Boosting 框架下实现机器学习算法。XGBoost 提供了梯度提升决策树(也称为 GBDT,GBM),可以快速准确地解决许多数据科学问题,可以在主要的分布式环境(Hadoop,SGE,MPI)上运行相同的代码,并可以解决数十亿个示例之外的问题。”

GitHub 地址:

https://github.com/dmlc/xgboost

13 Gensim(贡献者:301,贡献:3687,Stars :8295)

“Gensim 是一个用于主题建模、文档索引和大型语料库相似性检索的 Python 库,目标受众是自然语言处理(NLP)和信息检索(IR)社区。”

GitHub 地址:

https://github.com/RaRe-Technologies/gensim

14 Scrapy(贡献者:297,贡献:6808,Stars :30507)

“Scrapy 是一种快速的高级 Web 爬行和 Web 抓取框架,用于抓取网站并从其页面中提取结构化数据。它可用于从数据挖掘到监控和自动化测试的各种用途。”

GitHub 地址:

https://github.com/scrapy/scrapy

15 Caffe(贡献者:270,贡献:4152,Stars :26531)

“Caffe 是一个以表达、速度和模块化为基础的深度学习框架,由伯克利人工智能研究(BAIR)/ 伯克利视觉与学习中心(BVLC)和社区贡献者开发。”

GitHub 地址:

https://github.com/BVLC/caffe

以上就是2018年最受欢迎的15个库了,不知有没有你的菜喔!希望本文对所列出的库对你有所帮助!

❺ Python常用的作图软件工具有哪些

Python有许多可用于绘图的工具,包括Matplotlib、Seaborn、Bokeh和Plotly。其中,Matplotlib是最常用的工具,它可以用于创建各种类型的静态图表。Seaborn和Bokeh提供了更高级的绘图功能,可以用于创建更复杂和动态的图表。Plotly可以用于创建交互式图表,并且可以在网页上嵌入到网站中。

❻ python数据可视化--可视化概述

数据可视化是python最常见的应用领域之一,数据可视化是借助图形化的手段将一组数据以图形的形式表达出来,并利用数据分析和开发工具发现其中未知信息的数据处理过程。

在学术界有一句话广为流传,A picture worths thousand words,就是一图值千言。在课堂上,我经常举的例子就是大家在刷朋友圈的时候如果看到有人转发一篇题目很吸引人的文章时,我们都会点击进去,可能前几段话会很认真地看,文章很长的时候后面就会一目十行,失去阅读的兴趣。

所以将数据、表格和文字等内容用图表的形式表达出来,既能提高读者阅读的兴趣,还能直观表达想要表达的内容。

python可视化库有很多,下面列举几个最常用的介绍一下。

matplotlib

它是python众多数据可视化库的鼻祖,也是最基础的底层数据可视化第三方库,语言风格简单、易懂,特别适合初学者入门学习。

seaborn

Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。

pyecharts

pyecharts是一款将python与echarts结合的强大的数据可视化工具,生成的图表精巧,交互性良好,可轻松集成至 Flask,Sanic,Django 等主流 Web 框架,得到众多开发者的认可。

bokeh

bokeh是一个面向web浏览器的交互式可视化库,它提供了多功能图形的优雅、简洁的构造,并在大型数据集或流式数据集上提供高性能的交互性。

python这些可视化库可以便捷、高效地生成丰富多彩的图表,下面列举一些常见的图表。

柱形图

条形图

坡度图

南丁格尔玫瑰图

雷达图

词云图

散点图

等高线图

瀑布图

相关系数图

散点曲线图

直方图

箱形图

核密度估计图

折线图

面积图

日历图

饼图

圆环图

马赛克图

华夫饼图

还有地理空间型等其它图表,就不一一列举了,下节开始我们先学习matplotlib这个最常用的可视化库。

❼ Python中除了matplotlib外还有哪些数据可视化的库

数据可视化是展示数据、理解数据的有效手段,常用的Python数据可视化库如下:
1.Matplotlib:第一个Python可视化库,有许多别的程序库都是建立在其基础上或者直接调用该库,可以很方便地得到数据的大致信息,功能非常强大,但也非常复杂。
2.Seaborn:利用Matplotlib,用简洁的代码来制作好看的图表,与Matplotlib最大的区别为默认绘图风格和色彩搭配都具有现代美感。
3.ggplot:基于R的一个作图库的ggplot2,同时利用了源于《图像语法》中的概念,允许叠加不同的图层来完成一幅图,并不适用于制作非常个性化的图像,为操作的简洁度而牺牲了图像的复杂度。
4.Bokeh:与ggplot很相似,但与ggplot不同之处为它完全基于Python而不是从R处引用。长处在于能用于制作可交互、可直接用于网络的图表。图表可以输出为JSON对象、HTML文档或者可交互的网络应用。
5.Plotly:可以通过Python notebook使用,与bokeh一样致力于交互图表的制作,但提供在别的库中几乎没有的几种图表类型,如等值线图、树形图和三维图表。
6.pygal:与Bokeh和Plotly一样,提供可直接嵌入网络浏览器的可交互图像。与其他两者的主要区别在于可将图表输出为SVG格式,所有的图表都被封装成方法,且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。
7.geoplotlib:用于制作地图和地理相关数据的工具箱。可用来制作多种地图,比如等值区域图、热度图、点密度图等,必须安装Pyglet方可使用。
8.missingno:用图像的方式快速评估数据缺失的情况,可根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图对数据进行修正。

❽ Python中数据可视化经典库有哪些

Python有很多经典的数据可视化库,比较经典的数据可视化库有下面几个。

matplotlib

是Python编程语言及其数值数学扩展包 NumPy 的可视化操作界面。它利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,向应用程序嵌入式绘图提供了应用程序接口。

pyplot 是 matplotlib 的一个模块,它提供了一个类似 MATLAB 的接口。 matplotlib 被设计得用起来像 MATLAB,具有使用 Python 的能力。

优点:绘图质量高,可绘制出版物质量级别的图形。代码够简单,易于理解和扩展,使绘图变得轻松,通过Matplotlib可以很轻松地画一些或简单或复杂的图形,几行代码即可生成直方图、条形图、散点图、密度图等等,最重要的是免费和开源。

优点:用于创建、操纵和研究复杂网络的结构、以及学习复杂网络的结构、功能及其动力学。

上面是我的回答,希望对您有所帮助!

❾ Python 中的可视化工具介绍

几周前,R语言社区经历了一场关于画图工具的讨论。对于我们这种外人来说,具体的细节并不重要,但是我们可以将一些有用的观点运用到 Python 中。讨论的重点是 R 语言自带的绘图工具 base R 和 Hadley Wickham 开发的绘图工具 ggplot2 之间的优劣情况。如果你想了解更多细节内容,请阅读以下几篇文章:

其中最重要的两个内容是:

不是所有人都认同第二个观点,ggplot2确实无法绘制出所有的图表类型,但是我会利用它来做分析。

以下是 2016 年 4 月写的关于绘图工具的概述。出于多方面的原因,绘图工具的选取更多地取决于个人偏好,因此本文介绍的 Python 绘图工具也仅代表我的个人使用偏好。

Matplotlib 是一个强大的工具,它是 Pandas' builtin-plotting Seaborn 的基础。 Matplotlib 能够绘制许多不同的图形,还能调用多个级别的许多 API 。我发现 pyplot api 非常好用,你可能用不上 Transforms 或者 artists ,但是如果你有需求的话可以查阅帮助文档。我将从 pandas seaborn 图开始介绍,然后介绍如何调用 pyplot API

DataFrame Series 拥有 .plot 的命名空间,其中有许多图形类别可供选择(line, hist, scatter, 等等)。 Pandas 对象还提供了额外的用于增强图形展现效果的数据,如索引变量。
由于 pandas 具有更少的向后兼容的限制,所以它具有更好的美学特性。从这方面来说,我认为 pandas 中的 DataFrame.plot 是一个非常实用的快速探索性分析的工具。

Michael Waskom 所开发的 Seaborn 提供了一个高层次的界面来绘制更吸引人统计图形。 Seaborn 提供了一个可以快速探索分析数据不同特征的 API 接口,接下来我们将重点介绍它。

Bokeh 是一款针对浏览器开发的可视化工具。
matplotlib 一样,**Bokeh
** 拥有一系列 API 接口。比如 glpyhs 接口,该接口和 matplotllib 中的 Artists 接口非常相似,它主要用于绘制环形图、方形图和多边形图等。最近 Bokeh 又开放了一个新的图形接口,该接口主要用于处理词典数据或 DataFrame 数据,并用于绘制罐头图。

以下是一些本文没有提到的可视化工具:

我们将利用 ggplot2 中的 diamonds 数据集,你可以在 Vincent Arelbundock's RDatasets 中找到它(pd.read_csv(' http://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv') ),此外我们还需要检测是否已经安装 feather

[站外图片上传中……(4)]

Bokeh 提供了两个 API,一个是低级的 glyph API,另一个是高级的 Charts API。

[站外图片上传中……(5)]

还不是很清楚我们应该在啥时候利用 Bokeh 来进行探索性分析,不过它的交互式功能可以激发我的兴趣。就个人而言,由于习惯问题我平时仍然一直使用 matplotlib 来绘图,我还无法完全切换到 Bokeh 中。

我非常喜欢 Bokeh 的仪表盘功能和 bokeh server 的 webapps。

[站外图片上传中……(6)]

[站外图片上传中……(7)]

[站外图片上传中……(8)]

matplotlib 并不局限于处理 DataFrame 数据,它支持所有使用 getitem 作为键值的数据类型。

[站外图片上传中……(9)]

[站外图片上传中……(10)]

我们从列变量的名字中提取出轴标签,利用 Pandas 可以更加便捷地绘制一系列共享 x 轴数据的图形。

[站外图片上传中……(11)]

[站外图片上传中……(12)]

本文中的剩余部分将重点介绍 seaborn和为什么我认为它是探索性分析的强大工具。

我强烈建议你阅读 Seaborn 的 introctory notes,这上面介绍了 seaborn 的设计逻辑和应用领域。

我们可以通过一个稳定的且易懂的 API 接口来调用 Seaborn。

事实上,seaborn 是基于 matplotlib 开发的,这意味着如果你熟悉 pyplot API的话,那么你可以很容易地掌握 seaborn。

大多数 seaborn 绘图函数的参数都由 x, y, hue, 和 data 构成(并不是所有的参数都是必须的)。如果你处理的对象是 DataFrame,那么你可以直接将列变量的名称和数据集的名称一同传递到绘图函数中。

[站外图片上传中……(13)]

[站外图片上传中……(14)]

[站外图片上传中……(15)]

[站外图片上传中……(16)]

我们可以很轻易地探究两个变量之间的关系:

[站外图片上传中……(17)]

[站外图片上传中……(18)]

或者一次探究多个变量之间的关系:

[站外图片上传中……(19)]

[站外图片上传中……(20)]

pariplot 是 PairGrid 的一个包装函数,它提供了 seaborn 一个重要的抽象功能——Grid。Seaborn 的 Grid 将 matplotlib 中Figure 和数据集中的变量联系起来了。

我们有两种方式可以和 grids 进行交互操作。其一,seaborn 提供了类似于 pairplot 的包装函数,它提前设置了许多常见任务的参数;其二,如果你需要更多的自定义选项,那么你可以直接利用 Grid 方法。

[站外图片上传中……(21)]
[站外图片上传中……(22)]

[站外图片上传中……(23)]
34312 rows × 7 columns

[站外图片上传中……(24)]
[站外图片上传中……(25)]

FaceGrid 可以通过控制分面变量来生成 Grid图形,其中PairGrid是它的一个特例。接下来的案例中,我们将以数据集中的 cut 变量为分面变量来绘制图像:
[站外图片上传中……(26)]

[站外图片上传中……(27)]
最后一个案例展示了如何将 seaborn 和 matplotlib 结合起来。g.axes是matplotlib.Axes的一个数组,g.fig是matplotlib.Figure的一个特例。这是使用 seaborn 时常见的一个模式:利用 seaborn 的方法来绘制图像,然后再利用 matplotlib 来调整细节部分。

我认为 seaborn 之所以吸引人是因为它的绘图语法具有很强的灵活性。你不会被作者所设定的图表类型所局限住,你可以根据自己的需要创建新的图表。
[站外图片上传中……(28)]

[站外图片上传中……(29)]

[站外图片上传中……(30)]

[站外图片上传中……(31)]

本来,我打算准备更多的例子来介绍 seaborn,但是我会将相关链接分享给大家。Seaborn 的说明文档写的非常详细。

最后,我们将结合 scikit-learn 来介绍如何利用 GridSearch 来寻找最佳参数。
[站外图片上传中……(32)]

[站外图片上传中……(33)]

[站外图片上传中……(34)]

原文链接: http://tomaugspurger.github.io/modern-6-visualization.html

译者:Fibears

❿ 这几个常用的python库你需要知道

python可以说是近几年最火热、最实用的、最容易上手的工具之一了。功能强大、应用广泛,可以帮你搜集工作数据,还能帮你下载音乐,电影,于是就掀起了一波学习python的大潮,小编也毫不犹豫的加入了。但是对于向小编一样的小白来说,刚开始学习还是有些困难的,需要首先了解python的一些基础知识。所以小编就整理了一些常用的python库,希望对正在学习python的小伙伴有所帮助。
1.Matplotlib
Matplotlib是一个用于创建二维图和图形的底层库。借由它的帮助,你可以构建各种不同的图标,从直方图和散点图到费笛卡尔坐标图。matplotlib能够与很多流行的绘图库结合使用。
2.Seaborn
Seaborn本质上是一个基于matplotlib库的高级API。它包含更适合处理图表的默认设置。此外,还有丰富的可视化库,包括一些复杂类型,如时间序列、联合分布图(jointplots)和小提琴图(violindiagrams)。
3.Plotly
Plotly是一个流行的库,它可以让你轻松构建复杂的脊核图形。该软件包适用于交互式Web应用程,可实现轮廓图、三元图和三维图等视觉效果
4.Bokeh
Bokeh库使指咐用JavaScript小部件在浏览器中创建交互式和可缩放的可视化。该库提供了多种图表集合,样式可能性(stylingpossibilities),链接图、添加小部件和定义回调等形式的交互能力,以及许多更有用的特性。
5.Pydot
Pydot是用纯Python编写的Graphviz接口,经常用于生成复杂的定向图和无向图,能够显示图形的结构,对于构建神经网络和基于决策树的算法时非常有效。
6.pyecharts
是基于网络开源的Echarts而开发的Python可视化工具。
pyecharts功能非常强大,支持多达400+地图;支持JupyterNotebook、JupyterLab;能够轻松集成至Flask,Sanic,Django等主流Web框架
7.AutoViz
数据可视化,大多数都需要把数据读取到内存中,然后对内存中的数据进行可视化。但是,对于真正令人头疼的是一次又一次的开发读取离线文件的数据接口。
而AutoViz就是用于解决这个痛点的,它真正的可以做到1行代码轻松实现可视化。对于txt、json、csv等主流离线数据格式唯野纯能够同时兼容,经常用于机器学习、计算机视觉等涉及离线数据较多的应用场景。
8.Altair
Altair是一款基于Vega和Vega-Lite开发的统计可视化库。具有API简单、友好、一致等优点,使用起来非常方便,能够用最简短的代码实现数据可视化。
9.cufflinks
cufflinks结合了plotly的强大功能和panda的灵活性,可以方便地进行绘图,避免了数据可视化过程中,对数据存储结构和数据类型进行复杂的麻烦。
10Pygal
Pygal 的名气不是很大,使用图形框架语法来构建图像的。绘图目标比较简单,使用起来非常方便:实例化图片;用图片目标属性格式化;用 figure.add() 将数据添加到图片中即可。

热点内容
钉钉密码密码是什么 发布:2024-11-01 20:34:51 浏览:730
老款卡罗拉自动挡有哪些配置 发布:2024-11-01 20:34:06 浏览:570
android图片判断 发布:2024-11-01 20:34:03 浏览:267
怎么给自己手机写一个脚本 发布:2024-11-01 20:23:41 浏览:241
c语言大小写判断 发布:2024-11-01 20:21:53 浏览:130
php的点餐系统源码 发布:2024-11-01 20:13:53 浏览:714
拜占庭算法 发布:2024-11-01 20:10:31 浏览:357
xcode编译参数 发布:2024-11-01 20:00:04 浏览:665
苹果5怎么设置密码锁屏 发布:2024-11-01 19:54:55 浏览:124
宝塔上传文件夹 发布:2024-11-01 19:39:50 浏览:257