python拟合函数
Ⅰ 多项式拟合平方误差怎么求
线性模型(二)之多项式拟合
1. 多项式拟合问题
多项式拟合(polynominal curve fitting)是一种线性模型,模型和拟合参数的关系是线性的。多项式拟合的输入是一维的,即x=xx=x,这是多项式拟合和线性回归问题的主要区别之一。
多项式拟合的目标是构造输入xx的MM阶多项式函数,使得该多项式能够近似表示输入xx和输出yy的关系,虽然实际上xx和yy的关系并不一定是多项式,但使用足够多的阶数,总是可以逼近表示输入xx和输出yy的关系的。
多项式拟合问题的输入可以表示如下:
D={(x1,y1),(x2,y2),...,(xi,yi),...,(xN,yN)}xi∈Ryi∈R
D={(x1,y1),(x2,y2),...,(xi,yi),...,(xN,yN)}xi∈Ryi∈R
目标输出是得到一个多项式函数:
f(x)=w1x1+w2x2+wixi+...+wMxM+b=(∑i=1Mwixi)+b
f(x)=w1x1+w2x2+wixi+...+wMxM+b=(∑i=1Mwixi)+b
其中MM表示最高阶数为MM。
可见衡慎在线性拟合的模型中,共包括了(M+1)(M+1)个参数,而该模型虽然不是输入xx的线性函数,但却是(M+1)(M+1)个拟合参数的线性函数,所以称多项式拟合为线性模型。对于多项式拟合问题,其实就是要确定这(M+1)(M+1)个参数,这里先假设阶数MM是固定的(MM是一个超参数,可以用验证集来确定MM最优的值,详细的关于MM值确定的问题,后面再讨论),重点就在于如何求出这(M+1)(M+1)个参数的值。
2.优化目标
多告大项式拟合是利用多项式函数逼近输入xx和输出yy的函数关系,通过什么指标来衡量某个多项式函数的逼近程度呢?(其实这就是误差/损失函数)。拟合/回归问题常用的评价指标是均方误差(在机器学习中的模型评估与度量博客中,我进行了介绍)。多项式拟合问题也同样采用该评价指标,以均方误差作为误差/损失函数,误差函数越小,模型越好。
E(w,b)=1N∑i=1N[f(xi)−yi]2
E(w,b)=1N∑i=1N[f(xi)−yi]2
系数1N1N是一常数,对优化结果无影响,可以去除,即将均方误差替换为平方误差:
E(w,b)=∑i=1N[f(xi)−yi]2
E(w,b)=∑i=1N[f(xi)−yi]2
到这里,就成功把多项式拟合问题变成了最优化问题,优化咐友敬问题可表示为:
argminw,bE(w,b)
argminw,bE(w,b)
即需要求得参数{w1,...,wM,b}{w1,...,wM,b}的值,使得E(w,b)E(w,b)最小化。那么如何对该最优化问题求解呢?
3. 优化问题求解
3.1 求偏导,联立方程求解
直观的想法是,直接对所有参数求偏导,令偏导为0,再联立这M+1M+1个方程求解(因为共有M+1M+1个参数,故求偏导后也是得到M+1M+1个方程)。
E(w,b)=∑i=1N[f(xi)−yi]2=∑i=1N[(w1x1i+w2x2i+wixji+...+wMxMi+b)−yi]2
E(w,b)=∑i=1N[f(xi)−yi]2=∑i=1N[(w1xi1+w2xi2+wixij+...+wMxiM+b)−yi]2
利用E(w,b)E(w,b)对各个参数求偏导,如下:
∂E(w,b)∂wj∂E(w,b)∂b=2∑i=1N[(w1x1i+w2x2i+wixji+...+wMxMi+b)−yi]xji=2∑i=1N[(w1x1i+w2x2i+wixji+...+wMxMi+b)−yi]
∂E(w,b)∂wj=2∑i=1N[(w1xi1+w2xi2+wixij+...+wMxiM+b)−yi]xij∂E(w,b)∂b=2∑i=1N[(w1xi1+w2xi2+wixij+...+wMxiM+b)−yi]
求导之后,将各个点(xi,yi)(xi,yi)的值带入偏导公式,联立方程求解即可。
针对该解法,可以举个例子详细说明,比如有两个点(2,3),(5,8)(2,3),(5,8),需要利用二阶多项式f(x)=w1x+w2x2+bf(x)=w1x+w2x2+b拟合。求解过程如下:
该二阶多项式对参数求偏导得到
∂E(w,b)∂wj∂E(w,b)∂b=2∑i=12[(w1x1i+w2x2i+b)−yi]xji=[(w1x1+w2x21+b)−y1]xj1+[(w1x2+w2x22+b)−y2]xj2=2∑i=12[(w1x1i+w2x2i+b)−yi]=[(w1x1+w2x21+b)−y1]+[(w1x2+w2x22+b)−y2]
∂E(w,b)∂wj=2∑i=12[(w1xi1+w2xi2+b)−yi]xij=[(w1x1+w2x12+b)−y1]x1j+[(w1x2+w2x22+b)−y2]x2j∂E(w,b)∂b=2∑i=12[(w1xi1+w2xi2+b)−yi]=[(w1x1+w2x12+b)−y1]+[(w1x2+w2x22+b)−y2]
将点(2,3),(5,8)(2,3),(5,8)带入方程,可以得到3个方程,
2b+7w1+29w2=117b+29w1+133w2=4629b+133w1+641w2=212
2b+7w1+29w2=117b+29w1+133w2=4629b+133w1+641w2=212
联立这三个方程求解,发现有无穷多的解,只能得到3w1+21w2=53w1+21w2=5,这三个方程是线性相关的,故没有唯一解。
该方法通过求偏导,再联立方程求解,比较复杂,看着也很不美观。那么有没有更加方便的方法呢?
3.2 最小二乘法
其实求解该最优化问题(平方和的最小值)一般会采用最小二乘法(其实最小二乘法和求偏导再联立方程求解的方法无本质区别,求偏导也是最小二乘法,只是这里介绍最小二乘的矩阵形式而已)。最小二乘法(least squares),从英文名非常容易想到,该方法就是求解平方和的最小值的方法。
可以将误差函数以矩阵的表示(NN个点,最高MM阶)为:
∥Xw−y∥2
‖Xw−y‖2
其中,把偏置bb融合到了参数ww中,
w={b,w1,w2,...,wM}
w={b,w1,w2,...,wM}
XX则表示输入矩阵,
⎡⎣⎢⎢⎢⎢11...1x1x2...xNx21x22...x2N............xM1xM2...xMN⎤⎦⎥⎥⎥⎥
[1x1x12...x1M1x2x22...x2M...............1xNxN2...xNM]
yy则表示标注向量,
y={y1,y2,...,yN}T
y={y1,y2,...,yN}T
因此,最优化问题可以重新表示为
minw∥Xw−y∥2
minw‖Xw−y‖2
对其求导,
∂∥Xw−y∥2∂w=∂(Xw−y)T(Xw−y)∂w=∂(wTXT−yT)(Xw−y)∂w=∂(wTXTXw−yTXw−wTXTy+yTy)∂w
∂‖Xw−y‖2∂w=∂(Xw−y)T(Xw−y)∂w=∂(wTXT−yT)(Xw−y)∂w=∂(wTXTXw−yTXw−wTXTy+yTy)∂w
在继续对其求导之前,需要先补充一些矩阵求导的先验知识(常见的一些矩阵求导公式可以参见转载的博客https://blog.csdn.net/lipengcn/article/details/52815429),如下:
∂xTa∂x=a∂ax∂x=aT∂xTA∂x=Ax+ATx
∂xTa∂x=a∂ax∂x=aT∂xTA∂x=Ax+ATx
根据上面的矩阵求导规则,继续进行损失函数的求导
∂∥Xw−y∥2∂w=∂(wTXTXw−yTXw−wTXTy+yTy)∂w=XTXw+(XTX)Tw−(yTX)T−XTy=2XTXw−2XTy
∂‖Xw−y‖2∂w=∂(wTXTXw−yTXw−wTXTy+yTy)∂w=XTXw+(XTX)Tw−(yTX)T−XTy=2XTXw−2XTy
其中XTXw=(XTX)TwXTXw=(XTX)Tw.令求导结果等于0,即可以求导问题的最小值。
2XTXw−2XTy=0w=(XTX)−1XTy
2XTXw−2XTy=0w=(XTX)−1XTy
再利用最小二乘法的矩阵形式对前面的例子进行求解,用二阶多项式拟合即两个点(2,3),(5,8)(2,3),(5,8)。
表示输入矩阵 XX和标签向量yy
X=[1125425]y=[38]T
X=[1241525]y=[38]T
计算XTXXTX
XTX=⎡⎣⎢272972913329133641⎤⎦⎥
XTX=[272972913329133641]
矩阵求逆,再做矩阵乘法运算
但 XTXXTX不可逆,故无唯一解。
关于矩阵的逆是否存在,可以通过判断矩阵的行列式是否为0(det(A)=?0det(A)=?0 来判断,也可以通过初等行变换,观察矩阵的行向量是否线性相关,在这个例子下,矩阵不可逆,故有无穷多解。但如果新增一个点(4,7)(4,7),则就可以解了。
其实这和数据集的点数和选择的阶数有关,如果点数小于阶数则会出现无穷解的情况,如果点数等于阶数,那么刚好有解可以完全拟合所有数据点,如果点数大于阶数,则会求的近似解。
那么对于点数小于阶数的情况,如何求解?在python的多项式拟合函数中是可以拟合的,而且效果不错,具体算法不是很了解,可以想办法参考python的ployfit()函数的实现。
4. 拟合阶数的选择
在前面的推导中,多项式的阶数被固定了,那么实际场景下应该如何选择合适的阶数MM呢?
一般会选择阶数MM小于点数NN
把训练数据分为训练集合验证集,在训练集上,同时用不同的MM值训练多个模型,然后选择在验证集误差最小的阶数<script type="math/tex" id="MathJax-Element-5573">M</script
Ⅱ python_numpy最小二乘法的曲线拟合
在了解了最小二乘法的基本原理之后 python_numpy实用的最小二乘法理解 ,就可以用最小二乘法做曲线拟合了
从结果中可以看出,直线拟合并不能对拟合数据达到很好的效果,下面我们介绍一下曲线拟合。
b=[y1]
[y2]
......
[y100]
解得拟合函数的系数[a,b,c.....d]
CODE:
根据结果可以看到拟合的效果不错。
我们可以通过改变
来调整拟合效果。
如果此处我们把拟合函数改为最高次为x^20的多项式
所得结果如下:
矫正 过拟合 现象
在保持拟合函数改为最高次为x^20的多项式的条件下,增大样本数:
通过结果可以看出,过拟合现象得到了改善。
Ⅲ python中用polyfit拟合出的函数怎么能直接调用
首先分两种情况:
1.交互窗口处执行:这个时候由于python的强制缩进,因此想要结束函数的定义只需要按两下enter即可。
2.在.py文件中编写,结束函数只需要不再缩进即可
调用函数方法相同,把函数名及参数写上就可以了,如果有返回值可以
r=functionA(var1)
附:测试代码(python3运行通过)
# -*- coding:utf-8 -*-
#author:zfxcx
def pt():
print("hello")
pt()
Ⅳ python拟合指数函数初始值如何设定
求拟合函数,首先要有因变量和自变量的一组测试或实验数据,根据已知的曲线y=f(x),拟合出Ex和En系数。当用拟合出的函数与实验数据吻合程度愈高,说明拟合得到的Ex和En系数是合理的。吻合程度用相关系数来衡量,即R^2。首先,我们需要打开Python的shell工具,在shell当中新建一个对象member,对member进行赋值。 2、这里我们所创建的列表当中的元素均属于字符串类型,同时我们也可以在列表当中创建数字以及混合类型的元素。 3、先来使用append函数对已经创建的列表添加元素,具体如下图所示,会自动在列表的最后的位置添加一个元素。 4、再来使用extend对来添加列表元素,如果是添加多个元素,需要使用列表的形式。 5、使用insert函数添加列表元素,insert中有两个参数,第一个参数即为插入的位置,第二个参数即为插入的元素。origin拟合中参数值是程序拟合的结果,自定义函数可以设置参数的初值,也可以不设定参数的初值。
一般而言,拟合结果不会因为初值的不同而有太大的偏差,如果偏差很大,说明数据和函数不太匹配,需要对函数进行改正。X0的迭代初始值选择与求解方程,有着密切的关系。不同的初始值得出的系数是完全不一样的。这要通过多次选择和比较,才能得到较为合理的初值。一般的方法,可以通过随机数并根据方程的特性来初选。
Ⅳ Python 中的函数拟合
很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)
本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。
通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。
运行结果:
对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。
运行结果:
Ⅵ python polyfit函数怎么使用
用polyfit(X,Y,1)得到的拟合函数只能得到缺陆a,b,但段雹不能得到线伏燃顷性相关系数R^2。如想要得到其线性相关系数,可以用regress(y,X),其使用格式
[b,bint,r,rint,stats]
=
regress(y,X);
b——拟合系数
bint——b的置信区间
r——残差值
rint——r的置信区间
stats——检验统计量,第一个就是相关系数
例如:
x=[。。。];y=[。。。]
X=[x
ones(n,1)];
%x的行数(列数)
[b,bint,r,rint,stats]
=
regress(y,X);
Ⅶ python拟合圆如何设置拟合精度
OpenCV曲线拟合与圆拟合
使用OpenCV做图像处理与分析的时候,经常会遇到需要进行曲线拟合与圆拟合的场景,很多OpenCV开发者对此却是一筹莫展,其实OpenCV中是有现成的函数来实现圆拟合与直线拟合的,而且还会告诉你拟合的圆的半径是多少,简直是超级方便,另外一个常用到的场景就是曲线拟合,常见的是基如档漏于多项式拟合,可以根据设定的多项式幂次生成多项式方程,然后根据方程进行一系列的点生成,形成完整的曲线,这个车道线检测,轮廓曲线拟合等场景下特别有用。下面就通过两个简单的例子来分别学习一下曲线拟合与圆拟合的应用。
一:曲线拟合与应用
基于Numpy包的polyfit函数实现,其支持的三个参数分别是x点集合、y点集合,以及多项式的幂次。得到多项式方程以后,就可以完整拟合曲线,图中有如下四个点:
渣烂
调用polyfit生成的二阶多项式如下:
拟合结果如下:
使用三阶多项式拟合,调用polyfit生成的多项式方程如下:
生成的拟合曲线如下:
使用polyfit进行曲线拟合时候需要注意的是,多项式的幂次最大是数据点数目N - 1幂次多项式,比如有4个点,最多生成3阶多项式拟合。上述演蠢陆示的完整代码实现如下:
def circle_fitness_demo():
image = np.zeros((400, 400, 3), dtype=np.uint8)
x = np.array([30, 50, 100, 120])
y = np.array([100, 150, 240, 200])
for i in range(len(x)):
cv.circle(image, (x[i], y[i]), 3, (255, 0, 0), -1, 8, 0)
cv.imwrite("D:/curve.png", image)
poly = np.poly1d(np.polyfit(x, y, 3))
print(poly)
for t in range(30, 250, 1):
y_ = np.int(poly(t))
cv.circle(image, (t, y_), 1, (0, 0, 255), 1, 8, 0)
cv.imshow("fit curve", image)
cv.imwrite("D:/fitcurve.png", image)
二:圆拟合与应用
圆的拟合是基于轮廓发现的结果,对发现的近似圆的轮廓,通过圆拟合可以得到比较好的显示效果,轮廓发现与拟合的API分别为findContours与fitEllipse,
有图像如下:
使用轮廓发现与圆拟合处理结果如下:
红色表示拟合的圆,蓝色是圆的中心位置
上述完整的演示代码如下:
def circle_fitness_demo():
src = cv.imread("D:/javaopencv/c2.png")
cv.imshow("input", src)
src = cv.GaussianBlur(src, (3, 3), 0)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
cv.imshow("binary", binary)
image, contours, hierachy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for i in range(len(contours)):
rrt = cv.fitEllipse(contours[i])
cv.ellipse(src, rrt, (0, 0, 255), 2, cv.LINE_AA)
x, y = rrt[0]
cv.circle(src, (np.int(x), np.int(y)), 4, (255, 0, 0), -1, 8, 0)
cv.imshow("fit circle", src)
cv.imwrite("D:/fitcircle.png", src)
吾心信其可行,则移山填海之难,终有成功之日;
吾心信其不可行,则反掌折枝之易,亦无收效之期也
Ⅷ Python科学计算——任意波形拟合
任意波形的生成 (geneartion of arbitrary waveform) 在商业,军事等领域都有着重要的应用,诸如空间光通信 (free-space optics communication), 高速信号处理 (high-speed signal processing),雷达 (radar) 等。在任意波形生成后, 如何评估生成的任意波形 成为另外一个重要的话题。
假设有一组实验数据,已知他们之间的函数关系:y=f(x),通过这些信息,需要确定函数中的一些参数项。例如,f 是一个线型函数 f(x)=k*x+b,那么参数 k 和 b 就是需要确定的值。如果这些参数用 p 表示的话,那么就需要找到一组 p 值使得如下公式中的 S 函数最小:
这种算法被称之为 最小二乘拟合 (least-square fitting)。scipy 中的子函数库 optimize 已经提供实现最小二乘拟合算法的函数 leastsq 。下面是 leastsq 函数导入的方式:
scipy.optimize.leastsq 使用方法
在 Python科学计算——Numpy.genfromtxt 一文中,使用 numpy.genfromtxt 对数字示波器采集的三角波数据导入进行了介绍,今天,就以 4GHz三角波 波形的拟合为案例介绍任意波形的拟合方法。
在 Python科学计算——如何构建模型? 一文中,讨论了如何构建三角波模型。在标准三角波波形的基础上添加了 横向,纵向的平移和伸缩特征参数 ,最后添加了 噪声参数 模拟了三角波幅度参差不齐的随机性特征。但在波形拟合时,并不是所有的特征参数都要纳入考量,例如,噪声参数应是 波形生成系统 的固有特征,正因为它的存在使得产生的波形存在瑕疵,因此,在进行波形拟合并评估时,不应将噪声参数纳入考量,最终模型如下:
在调用 scipy.optimize.leastsq 函数时,需要构建误差函数:
有时候,为了使图片有更好的效果,需要对数据进行一些处理:
leastsq 调用方式如下:
合理的设置 p0 可以减少程序运行时间,因此,可以在运行一次程序后,用拟合后的相应数据对 p0 进行修正。
在对波形进行拟合后,调用 pylab 对拟合前后的数据进行可视化:
均方根误差 (root mean square error) 是一个很好的评判标准,它是观测值与真值偏差的平方和观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感,所以,均方根误差能够很好地反映出测量的精密度。
RMSE 用程序实现如下:
拟合效果,模型参数输出:
leastsq 函数适用于任何波形的拟合,下面就来介绍一些常用的其他波形:
Ⅸ Python最小二乘法拟合与作图
在函数拟合中,如果用p表示函数中需要确定的参数,那么目标就是找到一组p,使得下面函数S的值最小:
这种算法称为最小二乘法拟合。Python的Scipy数值计算库中的optimize模块提供了 leastsq() 函数,可以对数据进行最小二乘拟合计算。
此处利用该函数对一段弧线使用圆方程进行了拟合,并通过Matplotlib模块进行了作图,程序内容如下:
Python的使用中需要导入相应的模块,此处首先用 import 语句
分别导入了numpy, leastsq与pylab模块,其中numpy模块常用用与数组类型的建立,读入等过程。leastsq则为最小二乘法拟合函数。pylab是绘图模块。
接下来我们需要读入需要进行拟合的数据,这里使用了 numpy.loadtxt() 函数:
其参数有:
进行拟合时,首先我们需要定义一个目标函数。对于圆的碧带方程,我们需要圆心坐标(a,b)以及半径r三个参数,方便起见用p来存储:
紧接着就可以进行拟合了, leastsq() 函数需要至少提供拟合的函数友唤名与参数的初始值:
返回的悔告芦结果为一数组,分别为拟合得到的参数与其误差值等,这里只取拟合参数值。
leastsq() 的参数具体有:
输出选项有:
最后我们可以将原数据与拟合结果一同做成线状图,可采用 pylab.plot() 函数:
pylab.plot() 函数需提供两列数组作为输入,其他参数可调控线条颜色,形状,粗细以及对应名称等性质。视需求而定,此处不做详解。
pylab.legend() 函数可以调控图像标签的位置,有无边框等性质。
pylab.annotate() 函数设置注释,需至少提供注释内容与放置位置坐标的参数。
pylab.show() 函数用于显示图像。
最终结果如下图所示:
用Python作科学计算
numpy.loadtxt
scipy.optimize.leastsq