pythonhash表
㈠ python dict 实现原理 2019-04-17
dict对象是Python中一个原始的数据类型,按照键值对的方式存储,中文名为字典,其通过键名查找对应的值有很高的效率,时间复杂度在常数级别O(1)。Python dict的底层是依靠哈希表(Hash Table)进行实现的,使用开放地址法解决冲突。所以其查找的时间复杂度会是O(1),why?
哈希表是key-value类型的数据结构,通过关键码值直接进行访问。通过散列函数进行键和数组的下标映射从而决定该键值应该放在哪个位置,哈希表可以理解为一个键值需要按一定规则存放的数组,而哈希函数就是这个规则。
算法中时间和空间是不能兼得的,哈希表就是一种用合理的时间消耗去减少大量空间消耗的操作,这取决于具体的功能要求。
创建一个数组,数组下标是索引号,数组中的值是要获得的数据,这样只需要O(1)的时间复杂度就可以完成操作,但是扩展性不强,有以下两个方面的考虑:
-1- 新添加的元素超出数组索引范围,这就需要重新申请数组进行迁移操作。
-2- 假设一种极端的情况:只存在两个元素,索引号分别是1和100000000001,按照先前的设计思路,会浪费很大的存储空间。
会不会存在一个方法,为已有的索引创建新的索引,通过压缩位数,让新索引可以和原有的大范围的稀疏索引进行一一对应,新索引所需要的存储空间要大大减小,这就是哈希思想。
上面的例子中哈希函数的设计很随意,但是从这个例子中我们也可以得到信息:
哈希函数就是一个映射,因此哈希函数的设定很灵活,只要使得任何关键字由此所得的哈希函数值都落在表长允许的范围之内即可;
因为新的索引对旧的索引进行了空间上的压缩,所以不可能所有的输入都只对应唯一一个输出,也就是哈希函数式有可能发生冲突的,哈希函数不可能做成一对一的映射关系,其本质是一个多对一的映射。
直接寻址法:很容易理解,key=Value+C; 这个“C”是常量。Value+C其实就是一个简单的哈希函数。
除法取余法: 很容易理解, key=value%C;解释同上。
数字分析法:这种蛮有意思,比如有一组value1=112233,value2=112633,value3=119033,针对这样的数我们分析数中间两个数比较波动,其他数不变。那么我们取key的值就可以是key1=22,key2=26,key3=90。
平方取中法。此处忽略,见名识意。
折叠法:这种蛮有意思,比如value=135790,要求key是2位数的散列值。那么我们将value变为13+57+90=160,然后去掉高位“1”,此时key=60,哈哈,这就是他们的哈希关系,这样做的目的就是key与每一位value都相关,来做到“散列地址”尽可能分散的目地。
当两个不同的数据元素的哈希值相同时,就会发生冲突。解决冲突常用的手法有2种:
开放地址法:
如果两个数据元素的哈希值相同,则在哈希表中为后插入的数据元素另外选择一个表项。当程序查找哈希表时,如果没有在第一个对应的哈希表项中找到符合查找要求的数据元素,程序就会继续往后查找,直到找到一个符合查找要求的数据元素,或者遇到一个空的表项。
链接法:
将哈希值相同的数据元素存放在一个链表中,在查找哈希表的过程中,当查找到这个链表时,必须采用线性查找方法。
python的dict采用了哈希表,最低能在 O(1)时间内完成搜索,在发生哈希冲突的时候采用的是开放寻址法。java的HashMap也是采用了哈希表实现,但是在发生哈希冲突的时候采用的是链接法。
㈡ python之哈希算法
哈希(Hash)算法:`hash(object)`
哈希算法将一个不定长的输入,通过散列函数变换成一个定长的输出,即散列值。是一种信息摘要算法。对象的hash值比原对象拥有更低的内存复杂度。
它不同于加密。哈希(hash)是将目标文本转换成具有相同长度的,不可逆的杂凑字符串,而加密则是将文本转换为具有相同长度的,可逆的密文。
哈希(hash)算法是不可逆的,只能由输入产生输出,不能由输出产生输入。而加密则是可逆的。即可以从输入产生输出,也可以反过来从输出推出输入。
对于hash算法,不同的数据应该生成不同的哈希值。如果两个不同的数据经过Hash函数计算得到的Hash值一样。就称为哈希碰撞(collision)。哈希碰撞无法被完全避免。只能降低发生概率。
好的hash函数会导致最少的hash碰撞。
*
可哈希性(hashable):
可哈希的数据类型为不可变的数据结构(如字符串srt,元组tuple,对象集objects等)。这种数据被称为可哈希性。
不可哈希性:
不可哈希的数据类型,为可变的数据结构(如字典dict,列表list和集合set等)。
如果对可变的对象进行哈希处理,则每次对象更新时,都需要更新哈希表。这样我们则需要将对象移至不同的数据集,这种操作会使花费过大。
因此设定不能对可变的对象进行hash处理。
**
**
Python3.x添加了hash算法的随机性,以提高安全性,因此对于每个新的python调用,同样的数据源生成的结果都将不同。
哈希方法有(MD5, SHA1, SHA256与SHA512等)。常用的有SH256与SHA512。MD5与SHA1不再常用。
- MDH5 (不常用)
- SHA1 (不常用)
- SHA256 (常用)
- SHA512 (常用)
一种局部敏感的hash算法,它产生的签名在一定程度上可以表征原内容的相似度。
> 可以被用来比较文本的相似度。
安装simhash:
Pip3 install simhash
感知哈希算法(perceptual Hash Algorithm)。用于检测图像和视频的差异。
安装Imagehash:
pip3 install Imagehash
比较下面两张图片的Imagehash值
可以看到两张图片的hash值非常相似。相似的图片可以生成相似的哈希值是Imagehash的特点。
㈢ python 字典为什么这么快
因为字典是通过键来索引的,关联到相对的值,理论上他的查询复杂度是O(1)。
哈希表(也叫散列表),根据关键值对(Key-value)而直接进行访问的数据备羡结构。它通过把key和value映射到表中一个位置来访问记录,这种查询速度非常快,更新也快。而这个映射函数叫做哈希函数,存放值的数组叫做哈希表。 哈希函数的实唯肢现方式决定了哈希表的指滚世搜索效率。
㈣ 这段C语言代码如何转换成Python语言(关于哈希表)
将以上 C 语言代码转换为 Python 语言可能需要对哈希表和其他数据结构进行重新实现。但是可以提供一个类似的实现方式
def search_hash(hash_table, name):
collisions = 0 # to keep track of number of collisions
index = hash_function(name)
while hash_table[index] is not None and hash_table[index]['name'] != name:
collisions += 1
index = collision_resolution(index)
if hash_table[index] is not None:
print("Search successful! Number of collisions:", collisions)
print("Name: ", hash_table[index]['name'])
print("ID: ", hash_table[index]['id'])
print("Phone: ", hash_table[index]['phone'])
else:
print("Search unsuccessful.")
这个例子使用了字典来存储联系人的信息,其中 'name','id' 和 'phone' 是字典的键。hash_function() 和 collision_resolution() 函数可以用 Python 中的内置函数来实现,或者自己实现。
注意,这只是一种类似的实现方式,并不能完全替代原来的代码,还需要根据实际需求进行修改。
另外,在 Python 中可以使用字典或字典组成的列表来存肆指储哈希表,可以使用字典中的 get() 方法或者列表中的 in 关键字来查找一个元素是否在字典或列表中,如果要实现类似 C 语言中的冲突解决方式明察,可以在字典中使用链表或线性探测法来实现激雹茄。
这里只是给出了一种可能的实现方式,具体实现还需要根据具体需求进行调整。
㈤ Python中的哈希表——字典
一开始看到哈希表这个词,感觉非常的陌生,因为是从hash音译过来的,但是哈希表是一种非常有用的数据结构,可以提高效率。其实Python中的字典,局并就是一种典型的哈希表结构。用字典这个词,其实更好理解:
字典的结构是这样子的,总是成对出现:
{'姓名':'张三' , ’年龄‘哪野:'18', '籍贯':'北京'李腊喊 , ‘三围’:[88,68,94]}
其中“张三”“年龄”“籍贯”“三围”这些叫做键,“张三”“18”“北京”“88,68,94”是他们相对应的值,通过查询键,我们就可以直接访问相对应的值。这个过程就像查字典一样,我们知道一个字的部首,就可以快速的找到这个字在哪一页。
㈥ 如何用Python构造hash表解决DNA k-mer问题
思路:
1、首先采用命A=0,C=1,G=2,T=3. 就相当于4进制数字,然后采用karp-Rabin算法转换成唯一十进制数字。由于用此算法的哈希函数为:hash(value)=value*(4^(k-q-1));
value是该字符对应的值,k是kmer长度,q是此字符在字符串的位置范围在[0-(q-1)]。然后把一个kmer里面所有字符的hash值求和就行了。
2、那么很容易看出来,对于连续的下害常愤端莅得缝全俯户一个Kmer,就有推理公式了 hashNew=addValue+(hashOld-deleteValue*(4^(k-1)))*4; hashNew就是往右平移一个字符的kmer hash值,hashOld就是平移之前的值,addValue就是平移后右边多的一个字符,deleteValue就是平移后左边少的一个字符。这样整个hash表建立的时间复杂度约为O(m+k),m是整个文本长度。
3、由于kmer长度如果过长,其hash值过大,会造成内存不够溢出的现象,所以kmer内部定死为10 。那么问题就来了,如何应对不同的kmer值。分三种情况。
第一种:q>10
这种可以将kmer以10为单位,将hash表中对应值取出,然后对结果进行分析,这边分析方法为建立两个数组一个二维数组unionName储存位置关系,一个一维数组unionScore,计数用。 思路就是首先第一轮初始化unionName[Name][Pos]全部赋值Pos 并初始化unionScore,然后再第二轮匹配如果unionName[Name][Pos-cycle]=Pos-1则将其赋值为当前Pos,cycle为当前循环次数。并将当前循环数存入unionScore[NAME]中。最后当unionScore[NAME]值也就是循环数为k-1,即我们需要的交集了。
第二种:q=10
直接求出hash值,取出相应的值即可。
第三种:q<10
可以用前缀种子+后缀种子交集产生。
前缀种子:在字符串后面补字符直到长度等于K,这个很容易看出来 最小是全补A,最大是全补T,然后将最小值到最大值之间的hash值即为所求。
后缀种子:后缀种子和前缀种子不同就是在字符串左边补齐字符。所以此时需要进行变换。只要对前置种子产生的值变化下就行了。(preValue-minValue)*(4^(K-q))+hash(p) 。其中preValue就是对应的前置种子的hash值,minValue就是前置种子中最小值也就是全补A的情况,hash(p)就是字符串长度为p时候的hash值。
交集就是先求后缀种子所有的值,再加上 前缀种子中起始位置在[0-(k-1)]中的值。
㈦ Python字典的底层实现
字典是一种可变、无序容器数据结构。元素以键值对存在,键值唯一。它的特点搜索速度很快:数据量增加10000倍,搜索时间增加不到2倍;当数据量很大的时候,字典的搜索速度要比列表快成百上千倍。
在Python中,字典是通过散列表(哈希表)实现的。字典也叫哈希数组或关联数组,所以其本质是数组(如下图),每个 bucket 有两部分:一个是键对象的引用,一个是值对象的引用。所有 bucket 结构和大小一致,我们可以通过偏移量来读取指定 bucket。
定义一个字典 dic = {},假设其哈希数组长度为8。
Python会根据哈希数组的拥挤程度对其扩容。“扩容”指的是:创造更大的数组,这时候会对已经存在的键值对重新进行哈希取余运算保存到其它位置;一般接近 2/3 时,数组就会扩容。扩容后,偏移量的数字个数增加,如数组长度扩容到16时,可以用最右边4位数字作为偏移量。
计算键对象 name 的哈希值,然后比较哈希数组对应索引内的bucket是否为空,为空返回 None ,否则计算这个bucket的键对象的哈希值,然后与 name 哈希值比较,相等则返回 值对象 ,否则继续左移计算哈希值。
注意:
1.键必须为可哈希的,如数字、元组、字符串;自定义对象需要满足支持hash、支持通过 __eq__() 方法检测相等性、若 a == b 为真,则 hash(a) == hash(b) 也为真。
2.字典的内存开销很大,以空间换时间。
3.键查询速度很快,列表查询是按顺序一个个遍历,字典则是一步到位。
4.往字典里面添加新键可能导致扩容,导致哈希数组中键的次序变化。因此,不要在遍历字典的同时进行字典的修改。
㈧ Python数据结构与算法-哈希map的实现及原理
1-collections.MutableMapping
1.1 概念:这是什么?
大家可能想知道这一串英文是什么意思?其实只需要了解在collections库当中有一个非常重要的抽象基类MutableMappin
g,专门用于实现map的一个非常有价值的工具。后边我们会用到它。
2-我们的map基类
2.1 实现这个类
这个基类其实也就是确定了键值对的属性,并且存储了基本的比较方法。它的对象就是一个键值对咯。这个很好理解。有点类似object的感觉。
3-通过map基类实现的无序映射
给大家看一个上边的例子,这个例子来源于网络,自己改了改,能用,更加详细而已,凑合看.
4-Python哈希表的实现的基类
4.1 咱有话直说:上才(代)艺(码)
如果还不知道哈希表概念的同xio,请参考 python进阶之数据结构与算法–中级-哈希表(小白piao分享) 。废话不多说,咱们撸代码:
OK了,基本的哈希表就实现了,其实仔细想想很容易,但是自己要能实现还是要理解哈希表的本质哦,外加一定量的练习才可以熟练掌握,练习的目的就是为了熟练而已。
5-分离链表实现的具体哈希map类
说明:这玩意只是一种降低冲突的手段,上一节提过,降低冲突最好的地方是发生在元组进入桶的时候,所以想必大家猜到了,接下来的分离链表也就是为了self._bucket_xxxxxxx系列方法做准备。这里之所以在上边使用@abstractmethod就是为了继承实现,目的可以实现多种将冲突的哈希表。分离链表的概念上一节也有的。
“见码入面”(借鉴:见字如面这个电视节目,有兴趣可以看看,还不错的):
6-用线性探测处理冲突的哈希map类
这种方式的好处不需要再去借助其他额外的赋值结构来表示桶。结构更加简单。不会再像上一种方法还要让桶是一个UnsortedTableMap的对象。
代码如下:
㈨ Python数据结构-哈希表(Hash Table)
哈希表(Hash Table) :通过键 key 和一个映射函数 Hash(key) 计算出对应的值 value,把关键码值映射到表中一个位置来访问记录,以加快查找的速度。
哈希函数(Hash Function) :将哈希表中元素的关键键值映射为元素存储位置的函数。
哈希冲突(Hash Collision) :不同的关键字通过同一个哈希函数可能得到同一哈希地址。
哈希表的两个核心问题是: “哈希函数的构建” 和 “哈希冲突的解决方法” 。
常用的哈希函数方法有:直接寻址法、除留余数法、平方取中法、基数转换法、数字分析法、折叠法、随机数法、乘积法、点积法等。
常用的哈希冲突的解决方法有两种:开放地址法和链地址法。
给你一个整数数组 nums 和两个整数 k 和 t 。请你判断是否存在 两个不同下标 i 和 j,使得 abs(nums[i] - nums[j]) <= t ,同时又满足 abs(i - j) <= k 。
如果存在则返回 true,不存在返回 false。
给定两个数组 nums1 和 nums2 ,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。
给你两个整数数组 nums1 和 nums2 ,请你以数组形式返回两数组的交集。返回结果中每个元素出现的次数,应与元素在两个数组中都出现的次数一致(如果出现次数不一致,则考虑取较小值)。可以不考虑输出结果的顺序。
请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
力扣217
力扣389
力扣496
内容参考: https://algo.itcharge.cn/05.%E5%93%88%E5%B8%8C%E8%A1%A8/01.%E5%93%88%E5%B8%8C%E8%A1%A8%E7%9F%A5%E8%AF%86/
㈩ python哈希表和字典的区别
字典是将咐拦枣键映射到值的一般概念。有很多方法可以实现衡穗这样的映射。
散列表是一种实现字典的特定方式。
除了哈希表,实现字典衡拆的另一种常见方式是red-black trees。