数据分析又python又r
A. python和r数据分析哪个更好
2012年的时候我们说R是学术界的主流,但是现在Python正在慢慢取代R在学术界的地位。不知道是不是因为大数据时代的到来。
Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。所以有人说:Python=R+SQL/Hive,并不是没有道理的。
Python的一个最明显的优势在于其胶水语言的特性,很多书里也都会提到这一点,一些底层用C写的算法封装在Python包里后性能非常高效
(Python的数据挖掘包Orange canve
中的决策树分析50万用户10秒出结果,用R几个小时也出不来,8G内存全部占满)。但是,凡事都不绝对,如果R矢量化编程做得好的话(有点小难度),会
使R的速度和程序的长度都有显着性提升。
R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面,无论是经典还是前沿的方法都有相应的包直接使用。
相比之下,Python之前在这方面贫乏不少。但是,现在Python有了
pandas。pandas提供了一组标准的时间序列处理工具和数据算法。因此,你可以高效处理非常大的时间序列,轻松地进行切片/切块、聚合、对定期
/不定期的时间序列进行重采样等。可能你已经猜到了,这些工具中大部分都对金融和经济数据尤为有用,但你当然也可以用它们来分析服务器日志数据。于是,近
年来,由于Python有不断改良的库(主要是pandas),使其成为数据处理任务的一大替代方案。
做过几个实验:
1. 用python实现了一个统计方法,其中用到了ctypes,multiprocess。
之后一个项目要做方法比较,又用回R,发现一些bioconctor上的包已经默认用parallel了。(但那个包还是很慢,一下子把所有线程都用掉了,导致整个电脑使用不能,看网页非常卡~)
2. 用python pandas做了一些数据整理工作,类似数据库,两三个表来回查、匹配。感觉还是很方便的。虽然这些工作R也能做,但估计会慢点,毕竟几十万行的条目了。
3. 用python matplotlib画图。pyplot作图的方式和R差异很大,R是一条命令画点东
西,pylot是准备好了以后一起出来。pyplot的颜色选择有点尴尬,默认颜色比较少,之后可用html的颜色,但是名字太长了~。pyplot
的legend比R 好用多了,算是半自动化了。pyplot画出来后可以自由拉升缩放,然后再保存为图片,这点比R好用。
总的来说Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处
理,Python都有着明显优势。
而R是在统计方面比较突出。但是数据分析其实不仅仅是统计,前期的数据收集,数据处理,数据抽样,数据聚类,以及比较复杂的数据挖掘算法,数据建模等等
这些任务,只要是100M以上的数据,R都很难胜任,但是Python却基本胜任。
结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。
但世上本没有最好的软件或程序,也鲜有人能把单一语言挖掘运用到极致。尤其是很多人早先学了R,现在完全不用又舍不得,所以对于想要学以致用的人来说,如果能把R和Python相结合,就更好不过了。
B. 数据分析师常用工具有哪些
亿信ABI是融合了数据源适配、ETL数据处理、数据建模、数据分析、数据填报、工作流、门户、移动应用等核心功能的一站式数据处理分析平台。采用轻量级SOA架构设计、B/S模式,各模块间无缝集成。数据整合模块支持可视化的毕扒陆定义手顷ETL过程,完成对数据的清洗、装换、处理。数据集模块支此扰持数据库、文件、接口等多方式的数据建模。数据分析模块支持报表分析、敏捷看板、即席报告、幻灯片、酷屏、数据填报、数据挖掘等多种分析手段对数据进行分析、展现、应用。
C. r和python数据分析的区别有哪些
什么是R语言?
R语言,一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。R本来是由来自新西兰奥克兰大学的罗斯·伊哈卡和罗伯特·杰特曼开发(也因此称为R),现在由“R开发核心团队”负责开发。R基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。
R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和linux)、Windows和MacOS。R主要是以命令行操作,同时有人开发了几种图形用户界面。
相关推荐:《Python教程》
R的功能能够通过由用户撰写的包增强。增加的功能有特殊的统计技术、绘图功能,以及编程接口和数据输出/输入功能。这些软件包是由R语言、LaTeX、Java及最常用C语言和Fortran撰写。下载的可执行文件版本会连同一批核心功能的软件包,而根据CRAN纪录有过千种不同的软件包。其中有几款较为常用,例如用于经济计量、财经分析、人文科学研究以及人工智能。
Python与R语言的共同特点
Python和R在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法。
Python和R两门语言有多平台适应性,linux、window都可以使用,并且代码可移植性强。
Python和R比较贴近MATLAB以及minitab等常用的数学工具。
Python与R语言的区别
数据结构方面,由于是从科学计算的角度出发,R中的数据结构非常的简单,主要包括向量(一维)、多维数组(二维时为矩阵)、列表(非结构化数据)、数据框(结构化数据)。而Python则包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组(可读写、有序)、元组(只读、有序)、集合(唯一、无序)、字典(Key-Value)等等。
Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。
Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处理,Python都有着明显优势。 而R是在统计方面比较突出。
Python的pandas借鉴了R的dataframes,R中的rvest则参考了Python的BeautifulSoup,两种语言在一定程度上存在互补性,通常,我们认为Python比R在计算机编程、网络爬虫上更有优势,而R在统计分析上是一种更高效的独立数据分析工具。所以说,同时学会Python和R这两把刷子才是数据科学的王道。
D. 做数据分析用R还是python好
R是统计分析的专用语言。Python是一门通用语言,应用领域滚雹更广。如大此帆果专注数据分析,挖掘选用哪个差别不大,如果除了数据处理,还涉及到其他开发,则只扒槐能选Python了
E. 数据分析用python还是r语言
数据分析的话,我觉得都是可以采用的,因为两者来说都是有一些特点有优势也有劣势
F. R语言与Python是什么
都是程序计算机语言。
Python入门简单,而R则相对比较难一些。R做文本挖掘现在还有点弱,当然优点在于函数都给你写好了,你只需要知道参数的形式就行了,有时候即使参数形式不对,R也能"智能地”帮你适应。这种简单的软件适合想要专注于业务的人。
Python几乎都可以做,函数比R多,比R快。它是一门语言,R更像是一种软件,所以python更能开发出flexible的算法。
相关介绍
Python和R本身在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法,所以使用起来产出比大。
这两门语言对于平台方面适用性比较广,linux、window都可以使用,并且代码可移植性还算不错的。对于学数理统计的人来说,应该大多用过MATLAB以及mintab等工具,Python和R比较贴近这些常用的数学工具,使用起来有种亲切感。
G. 数据分析用r还是python
R和Python两者谁更适合数据分析领域?在某些特定情况下谁会更有优势?还是一个天生在各方面都比另一个更好?
当我们想要选枯芹择一种编程语言进行数据分析时,相信大多数人都会想到R和Python——但是从这两个非常强大、灵活的数据分析语言中没旅毕二选一是非常困难的。
我承认我还没能从这两个数据科学家喜爱的语言中选出更好的那一个。因此,为了使事情变得有趣,本文将介绍一些关于这两种语言的详细信息,并将决策权留给读者。值得一提的是,有多种途径可以了解这两种语言各自的优缺点。然而在我看来,这两种语言之间其实有很强的关联。
Stack Overflow趋势对比
上图显示了自从2008年(Stack Overflow 成立)以来,这两种语言随着时间的推移而发生的变化。
R和Python在数据科学领域展开激烈竞争,我们来看看他们各自的平台份额,并将2016与2017年进行比较:
相关推荐:《Python入门教程》
接下来我们将从适用场景、数据处理能力、任务、安装难度以及开放工具等方面详细了解这两种语言。
适用场景
R适用于数据分析任务需要独立计算或单个服务器的应用场景。Python作为一种粘合剂语言,在数据分析任务中需要与Web应用程序集成或者当一条统计代码需要插入到生产数据库中时,使用Python更好。
任务
在进行探索性统计分析时,R胜出。它非常适合初学者,统计模型仅需几行代码即可实现。Python作为一个完整而强大的编程语言,是部署用于生产使用的算法的有力工具。
数据处理能力
有了大量针对专业程序员以及非专业程序员的软件包和库的支持,不管是执行统计测试还是创建机器学习模型,R语言都得心应手。
Python最初在数据分析方面不是特别擅长,但随着NumPy、Pandas以及其他扩展库的推出,它已经逐渐在数据分析领域获得了广泛的应用。
开发环境
对于R语言,需要使用R Studio。对于Python,有很多Python IDE可供选择,其中Spyder和IPython Notebook是最受欢迎的。
热门软件包和库
下面罗列了R和Python推出的针对专业以及非专业程序员的最热门的软件包和库。
R:针对专业程序员的热门软件包
用于数据操作的 dplyr、plyr和 data table
用于字符串操作的 stringr
定期和不定期时间序列 zoo
数据可视化工具 ggvis、lattice 和 ggplot2
用于机器学习的 caret
R:针对非专业程序员的热门软件包
Rattle
R Commander
Decer
这些完整的GUI包可以实现强大的数据统计和建模功能。
Python:针对专业程序员的热门库
用于数据分析的 pandas
用于科学计算的 SciPy 和 NumPy
用于机器学习的 scikit-learn
图表库 matplotlib
statsmodels 用来探索数据,估算统计模型,并执行统计测试和单元测试
Python:针对非专业程序员的热门库
Orange Canvas 3.0是遵循GPL协议的开源软件包。它使用一些常用的Python开源库进行科学计算,包括numpy、scipy和scikit-learn。
R 和 Python 详细对比
正如本文开头提到的,R和Python之间有很强的关联,并且这两种语言日益普及。很难说哪一种更好,它们两者的整合在数据科学界激起了许多积极和协作的波澜。
总结
事实上,日常用户和数据科学家可以同时利用这两者语言,因为R用户可以在R中通过 rPython包来运行R中的Python代码,而Python用户可以通过RPy2库镇猜在Python环境中运行R代码。
H. Python和R的区别
Python与R的区别:
虽然R语言更为专业,但Python是为各种用例设计的通用编程语言。如果你第一次学编程,会发现Python上手更容易,应用范围也较广,如果你对编程已经有了一定的基础,或者就是以数据分析为中心的特定职业目标,R语言可能会更适合你的需求,Python和R也有很多相似之处,两者都是流行的开源编程语言,都得到了广泛的支持。
Python是近几年增长非常快的编程语言,是面向对象的,它为项目提供了稳定性和模块化,为Web开发和数据科学提供了灵活的方法,掌握Python是程序员在商业、数字产品、开源项目和数据科学以外的各种Web应用程序中工作所必需的技能。
R是一种特定于领域的语言,用于数据分析和统计,它使用统计学家使用的特定语法,是研究和学术数据科学世界的重要组成部分,R遵循开发的过程模型,没有将数据和代码分组,比如面向对象的编程,而是将编程任务分解为一系列的步骤和子程序,这些过程使可视化操作变得更加简单。
学习Python的三个理由:
1、对初学者是友好的,它使用了一种逻辑和易于接近的语法,使识别代码字符串更加容易,减少了学习困难和一些挑战。
2、Python是多用途的,并不局限于数据科学,它还能很好的处理基于web的应用程序,并且支持多种数据结构,包括使用SQL的数据结构。
3、Python是可伸缩的,比R语言运行速度更快,可以和项目一起增长和扩展,提供了必要的有效工作流程,使工作得以实现。
学习R的三个理由:
1、R为统计而建,R使特定类型的程序构建和交流结果变得更加直观,统计学家和数据分析人员用R语言,会更容易使用标准机器学习模型和数据挖掘来管理大型数据集。
2、R是学术性的:在学术界工作,R几乎是默认的。R非常适合机器学习的一个子领域,称为统计学习。任何有正式统计背景的人都应该识别R的语法和结构。
3、R对分析是直观的,它还提供了一个非常适合于科学家使用的数据可视化类型的强大环境。
I. r语言和python的区别是什么
1、数据结构复杂程度不同
R中的数据结构非常的简单,主要包括向量一维、多维数组二维时为矩阵、列表非结构化数据、数据框结构化数据。
Python 则包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组。
2、适用场景不同
R适用于数据分析任务需要独立计算或单个服务器的应用场景。
Python作为一种粘合剂语言,在数据分析任务中需要与Web应用程序集成或者当一条统计代码需要插入到生产数据库中时,使用Python更好。
3、数据处理能力不同
有了大量针对专业程序员以及非专业程序员的软件包和库的支持,不管是执行统计测试还是创建机器学习模型,R语言都得心应手。
Python最初在数据分析方面不是特别擅长,但随着NumPy、Pandas以及其他扩展库的推出,它已经逐渐在数据分析领域获得了广泛的应用。
4、开发环境不同
对于R语言,需要使用R Studio。
对于Python,有很多Python IDE可供选择,其中Spyder和IPython Notebook是最受欢迎的。
J. 数据分析用r还是python
使用Python:
Python最初是作为用于软件开发的编程语言开发的(后来添加了数据分析工具或槐手),因此具有计算机科学或软件开发背景的人们可能会更舒适地使用它。
因此,从其他流行的编程语言(例如Java或C ++)到Python的过渡比从那些语言到R的过渡容易。
使用R:
R有一组称为Tidyverse的软件包,这些软件包提供了功能强大但易于学习的工具,用于导入,操作,可衫嫌视化和报告数据。使用这些工具,没有任何编程或数据分析经验(至少是轶事)的人可以比Python更快地提高生产力。
总体而言,如果我们或明燃我们的员工没有数据分析或编程背景,R可能更有意义。