当前位置:首页 » 编程语言 » python访问hdfs

python访问hdfs

发布时间: 2023-03-19 09:34:12

python检测hdfs路径是否存在

用python访问hdfs是个很头疼的事情:

importpyhdfs
fs=pyhdfs.connect("192.168.1.1",启歼9000)
pyhdfs.get(fs,"/rui/111","/var/111")
f=pyhdfs.open(fs,"扒旁搏/test/xxx","春祥w")
pyhdfs.write(fs,f,"fuc")
pyhdfs.close(fs,f)
pyhdfs.disconnect(fs)

② 为什么从事大数据行业,一定要学习Python

Python这只小虫子最近随着大数据的兴起可以说是十分的火了。有越来越多的人不敢小觑Python这门语言了。也有更多的人在学习Python。Python为何会有如此大的魅力?为什么从事大数据行业必学Python?这还要从Python这门语言的优点开始讲起。

虽然Python这种语言不如Java、C++这些语言普及,却早在1991年就已经诞生了。它的语法简单清晰,以实用为主,是门十分朴素的语言。同时,它还是编程语言中的“和事佬”,被人戏称为胶水语言。因为它能够将其他语言制作的各种模块很轻松的联结在一起。

如果将Python语言拟人化,它绝对属于“老好人”的那一类,让人容易亲近,人们与它交流并不需要花太多心思。但它却拥有强大的功能。很多语言不能完成的任务,Python都能轻易完成。它几乎可以被用来做任何事情,应用于多个系统和平台。无论是系统操作还是Web开发,抑或是服务器和管理工具、部署、科学建模等,它都能轻松掌握。因此,从事海量数据处理的大数据行业,自然少不了这个“万能工具”。

除此之外,Python这只小虫子还受到了大数据老大哥Google的青睐。Google的很多开发都用到了Python。这使得人们能够找到Python的很多指南和教程。让你学起来更方便,你在使用中可能遇到的很多问题大多数都已经被Google给解决了,并把解决方法发布到了网络平台。

Python还拥有一系列非常优秀的库,这省了你编程中的很多时间。尤其是在人工智能和机器学习领域,这些库的价值体现得更为明显。

不管怎么说,从事大数据工作,少不得要在网络上爬取数据,不用Python爬虫,你还打算用什么呢?

因此,在当前的大数据领域,从事大数据行业必学Python。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
————————————————
版权声明:本文为CSDN博主“oshidai”的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/oshidai/article/details/88712833

③ python后端开发需要学哪些内容

Python的学习内容还是比较多的,我们将学习的过程划分为4个阶段,每个阶段学习对应的内容,具体的学习顺序如下:

Python学习顺序:

①Python软件开发基础

  • 掌握计算机的构成和工作原理

  • 会使用linux常用工具

  • 熟练使用Docker的基本命令

  • 建立Python开发环境,并使用print输出

  • 使用Python完成字符串的各种操作

  • 使用Python re模块进行程序设计

  • 使用Python创建文件、访问、删除文件

  • 掌握import 语句、From…import 语句、From…import* 语句、方法的引用、Python中的包

②Python软件开发进阶

  • 能够使用Python面向对象方法开发软件

  • 能够自己建立数据库,表,并进行基本数据库操作

  • 掌握非关系数据库MongoDB的使用,掌握Redis开发

  • 能够独立完成TCP/UDP服务端客户端软件开发,能够实现ftp、http服务器,开发邮件软件

  • 能开发多进程、多线程软件

③Python全栈式WEB工程师

  • 能够独立完成后端软件开发,深入理解Python开发后端的精髓

  • 能够独立完成前端软件开发,并和后端结合,熟练掌握使用Python进行全站Web开发的技巧

④Python多领域开发

  • 能够使用Python熟练编写爬虫软件

  • 能够熟练使用Python库进行数据分析

  • 招聘网站Python招聘职位数据爬取分析

  • 掌握使用Python开源人工智能框架进行人工智能软件开发、语音识别、人脸识别

  • 掌握基本设计模式、常用算法

  • 掌握软件工程、项目管理、项目文档、软件测试调优的基本方法

如果打算线下学,建议考察对比一下中博软件学院、南京课工场、南京北大青鸟等开设python专业的学校,记得找我要全套python视频课,祝你学有所成!望采纳!

北大青鸟中博软件学院python课堂实拍

④ 如何使用Python为Hadoop编写一个简单的MapRece程序

在这个实例中,我将会向大家介绍如何使用Python 为 Hadoop编写一个简单的MapRece
程序。
尽管Hadoop 框架是使用Java编写的但是我们仍然需要使用像C++、Python等语言来实现Hadoop程序。尽管Hadoop官方网站给的示例程序是使用Jython编写并打包成Jar文件,这样显然造成了不便,其实,不一定非要这样来实现,我们可以使用Python与Hadoop 关联进行编程,看看位于/src/examples/python/WordCount.py 的例子,你将了解到我在说什么。

我们想要做什么?

我们将编写一个简单的 MapRece 程序,使用的是C-Python,而不是Jython编写后打包成jar包的程序。
我们的这个例子将模仿 WordCount 并使用Python来实现,例子通过读取文本文件来统计出单词的出现次数。结果也以文本形式输出,每一行包含一个单词和单词出现的次数,两者中间使用制表符来想间隔。

先决条件

编写这个程序之前,你学要架设好Hadoop 集群,这样才能不会在后期工作抓瞎。如果你没有架设好,那么在后面有个简明教程来教你在Ubuntu Linux 上搭建(同样适用于其他发行版linux、unix)

如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立单节点的 Hadoop 集群

如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立多节点的 Hadoop 集群

Python的MapRece代码

使用Python编写MapRece代码的技巧就在于我们使用了 HadoopStreaming 来帮助我们在Map 和 Rece间传递数据通过STDIN (标准输入)和STDOUT (标准输出).我们仅仅使用Python的sys.stdin来输入数据,使用sys.stdout输出数据,这样做是因为HadoopStreaming会帮我们办好其他事。这是真的,别不相信!

Map: mapper.py

将下列的代码保存在/home/hadoop/mapper.py中,他将从STDIN读取数据并将单词成行分隔开,生成一个列表映射单词与发生次数的关系:
注意:要确保这个脚本有足够权限(chmod +x /home/hadoop/mapper.py)。

#!/usr/bin/env python

import sys

# input comes from STDIN (standard input)
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# split the line into words
words = line.split()
# increase counters
for word in words:
# write the results to STDOUT (standard output);
# what we output here will be the input for the
# Rece step, i.e. the input for recer.py
#
# tab-delimited; the trivial word count is 1
print '%s\\t%s' % (word, 1)在这个脚本中,并不计算出单词出现的总数,它将输出 "<word> 1" 迅速地,尽管<word>可能会在输入中出现多次,计算是留给后来的Rece步骤(或叫做程序)来实现。当然你可以改变下编码风格,完全尊重你的习惯。

Rece: recer.py

将代码存储在/home/hadoop/recer.py 中,这个脚本的作用是从mapper.py 的STDIN中读取结果,然后计算每个单词出现次数的总和,并输出结果到STDOUT。
同样,要注意脚本权限:chmod +x /home/hadoop/recer.py

#!/usr/bin/env python

from operator import itemgetter
import sys

# maps words to their counts
word2count = {}

# input comes from STDIN
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()

# parse the input we got from mapper.py
word, count = line.split('\\t', 1)
# convert count (currently a string) to int
try:
count = int(count)
word2count[word] = word2count.get(word, 0) + count
except ValueError:
# count was not a number, so silently
# ignore/discard this line
pass

# sort the words lexigraphically;
#
# this step is NOT required, we just do it so that our
# final output will look more like the official Hadoop
# word count examples
sorted_word2count = sorted(word2count.items(), key=itemgetter(0))

# write the results to STDOUT (standard output)
for word, count in sorted_word2count:
print '%s\\t%s'% (word, count)
测试你的代码(cat data | map | sort | rece)

我建议你在运行MapRece job测试前尝试手工测试你的mapper.py 和 recer.py脚本,以免得不到任何返回结果
这里有一些建议,关于如何测试你的Map和Rece的功能:
——————————————————————————————————————————————
\r\n
# very basic test
hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py
foo 1
foo 1
quux 1
labs 1
foo 1
bar 1
——————————————————————————————————————————————
hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py | sort | /home/hadoop/recer.py
bar 1
foo 3
labs 1
——————————————————————————————————————————————

# using one of the ebooks as example input
# (see below on where to get the ebooks)
hadoop@ubuntu:~$ cat /tmp/gutenberg/20417-8.txt | /home/hadoop/mapper.py
The 1
Project 1
Gutenberg 1
EBook 1
of 1
[...]
(you get the idea)

quux 2

quux 1

——————————————————————————————————————————————

在Hadoop平台上运行Python脚本

为了这个例子,我们将需要三种电子书:

The Outline of Science, Vol. 1 (of 4) by J. Arthur Thomson\r\n
The Notebooks of Leonardo Da Vinci\r\n
Ulysses by James Joyce
下载他们,并使用us-ascii编码存储 解压后的文件,保存在临时目录,比如/tmp/gutenberg.

hadoop@ubuntu:~$ ls -l /tmp/gutenberg/
total 3592
-rw-r--r-- 1 hadoop hadoop 674425 2007-01-22 12:56 20417-8.txt
-rw-r--r-- 1 hadoop hadoop 1423808 2006-08-03 16:36 7ldvc10.txt
-rw-r--r-- 1 hadoop hadoop 1561677 2004-11-26 09:48 ulyss12.txt
hadoop@ubuntu:~$

复制本地数据到HDFS

在我们运行MapRece job 前,我们需要将本地的文件复制到HDFS中:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -FromLocal /tmp/gutenberg gutenberg
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls
Found 1 items
/user/hadoop/gutenberg <dir>
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg
Found 3 items
/user/hadoop/gutenberg/20417-8.txt <r 1> 674425
/user/hadoop/gutenberg/7ldvc10.txt <r 1> 1423808
/user/hadoop/gutenberg/ulyss12.txt <r 1> 1561677

执行 MapRece job

现在,一切准备就绪,我们将在运行Python MapRece job 在Hadoop集群上。像我上面所说的,我们使用的是
HadoopStreaming 帮助我们传递数据在Map和Rece间并通过STDIN和STDOUT,进行标准化输入输出。

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-mapper /home/hadoop/mapper.py -recer /home/hadoop/recer.py -input gutenberg/*
-output gutenberg-output
在运行中,如果你想更改Hadoop的一些设置,如增加Rece任务的数量,你可以使用“-jobconf”选项:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-jobconf mapred.rece.tasks=16 -mapper ...

一个重要的备忘是关于Hadoop does not honor mapred.map.tasks
这个任务将会读取HDFS目录下的gutenberg并处理他们,将结果存储在独立的结果文件中,并存储在HDFS目录下的
gutenberg-output目录。
之前执行的结果如下:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-mapper /home/hadoop/mapper.py -recer /home/hadoop/recer.py -input gutenberg/*
-output gutenberg-output

additionalConfSpec_:null
null=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming
packageJobJar: [/usr/local/hadoop-datastore/hadoop-hadoop/hadoop-unjar54543/]
[] /tmp/streamjob54544.jar tmpDir=null
[...] INFO mapred.FileInputFormat: Total input paths to process : 7
[...] INFO streaming.StreamJob: getLocalDirs(): [/usr/local/hadoop-datastore/hadoop-hadoop/mapred/local]
[...] INFO streaming.StreamJob: Running job: job_200803031615_0021
[...]
[...] INFO streaming.StreamJob: map 0% rece 0%
[...] INFO streaming.StreamJob: map 43% rece 0%
[...] INFO streaming.StreamJob: map 86% rece 0%
[...] INFO streaming.StreamJob: map 100% rece 0%
[...] INFO streaming.StreamJob: map 100% rece 33%
[...] INFO streaming.StreamJob: map 100% rece 70%
[...] INFO streaming.StreamJob: map 100% rece 77%
[...] INFO streaming.StreamJob: map 100% rece 100%
[...] INFO streaming.StreamJob: Job complete: job_200803031615_0021

[...] INFO streaming.StreamJob: Output: gutenberg-output hadoop@ubuntu:/usr/local/hadoop$

正如你所见到的上面的输出结果,Hadoop 同时还提供了一个基本的WEB接口显示统计结果和信息。
当Hadoop集群在执行时,你可以使用浏览器访问 http://localhost:50030/ ,如图:

检查结果是否输出并存储在HDFS目录下的gutenberg-output中:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg-output
Found 1 items
/user/hadoop/gutenberg-output/part-00000 <r 1> 903193 2007-09-21 13:00
hadoop@ubuntu:/usr/local/hadoop$

可以使用dfs -cat 命令检查文件目录

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -cat gutenberg-output/part-00000
"(Lo)cra" 1
"1490 1
"1498," 1
"35" 1
"40," 1
"A 2
"AS-IS". 2
"A_ 1
"Absoluti 1
[...]
hadoop@ubuntu:/usr/local/hadoop$

注意比输出,上面结果的(")符号不是Hadoop插入的。

转载仅供参考,版权属于原作者。祝你愉快,满意请采纳哦

⑤ python 怎么把日志文件写到hdfs

在IDE中设置project interpreter为python2的路径即可; 在window中设置python2的路径到环境变量Path中 在linux中设置python2的路径到PATH中

⑥ Python怎么获取HDFS文件的编码格式

你好,你可以利用python3的python3-magic来获得文件的编码格式。下面是对应的代码
import magic

blob = open('unknown-file').read()

m = magic.open(magic.MAGIC_MIME_ENCODING)

m.load()

encoding = m.buffer(blob) # "utf-8" "us-ascii" etc

⑦ 关于python使用hdfs3模块,提示找不到libhdfs3的处理

我在自己的Linux环境下安装了libhdfs3,发现不工作,提示找不到hdfs3这个库
于是按照网上的提示,先尝试用pip来安装解决,但是发现还是无解!

于是我转向anaconda2: https://www.anaconda.com/download/#macos
找到对应的installer安装,总算安装尺仔吵成陵侍戚扰功

开始安装hdfs3

然后找到对应的安装路径

在我的python文件头前加入以下几句话,就可以解决这个问题

⑧ python访问hdfs

  1. 将当前的python脚本名称改为test_pyhdfs之类,总之不要和包的名字一样。

  2. import后,执行dir(pyhdfs),贴出结果看看。

⑨ Python使用hdfs存放文件时报Proxy error: 502 Server dropped connection解决方案

Python3 使用hdfs分布式文件储存系统

from pyhdfs import *

client = HdfsClient(hosts="testhdfs.org, 50070",

user_name="web_crawler")    #    创建一个连接

client.get_home_directory()    # 获取hdfs根路径

client.listdir(PATH)    # 获取hdfs指定路径下的文件列表

client._from_local(file_path, hdfs_path, overwrite=True)    # 把本地文件拷贝到服务器,不支持文件夹;overwrite=True表示存在则覆盖

​client.delete(PATH, recursive=True)    # 删除指定文件

hdfs_path必须包含文件名及其后缀,不然不会成功

如果连接

HdfsClient

报错

Traceback (most recent call last):

  File "C:\Users\billl\AppData\Local\Continuum\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2963, in run_code

    exec(code_obj, self.user_global_ns, self.user_ns)

  File "

    client.get_home_directory()

  File "C:\Users\billl\AppData\Local\Continuum\anaconda3\lib\site-packages\pyhdfs.py", line 565, in get_home_directory

    return _json(self._get('/', 'GETHOMEDIRECTORY', **kwargs))['Path']

  File "C:\Users\billl\AppData\Local\Continuum\anaconda3\lib\site-packages\pyhdfs.py", line 391, in _get

    return self._request('get', *args, **kwargs)

  File "C:\Users\billl\AppData\Local\Continuum\anaconda3\lib\site-packages\pyhdfs.py", line 377, in _request

    _check_response(response, expected_status)

  File "C:\Users\billl\AppData\Local\Continuum\anaconda3\lib\site-packages\pyhdfs.py", line 799, in _check_response

    remote_exception = _json(response)['RemoteException']

  File "C:\Users\billl\AppData\Local\Continuum\anaconda3\lib\site-packages\pyhdfs.py", line 793, in _json

    "Expected JSON. Is WebHDFS enabled? Got {!r}".format(response.text))

pyhdfs.HdfsException: Expected JSON. Is WebHDFS enabled? Got '\n\n\n\n

502 Server dropped connection

\n

The following error occurred while trying to access http://%2050070:50070/webhdfs/v1/?user.name=web_crawler&op=GETHOMEDIRECTORY :

\n 502 Server dropped connection

\n

Generated Fri, 21 Dec 2018 02:03:18 GMT by Polipo on .\n\r\n'

则一般是访问认证错误,可能原因是账户密码不正确或者无权限,或者本地网络不在可访问名单中

热点内容
nasm编译器如何安装 发布:2024-11-05 22:01:13 浏览:176
登录密码在微信的哪里 发布:2024-11-05 22:00:29 浏览:735
c防止反编译工具 发布:2024-11-05 21:56:14 浏览:243
安卓虚拟机怎么用 发布:2024-11-05 21:52:48 浏览:340
php时间搜索 发布:2024-11-05 20:58:36 浏览:475
燕山大学编译原理期末考试题 发布:2024-11-05 20:13:54 浏览:524
华为电脑出现临时服务器 发布:2024-11-05 20:05:08 浏览:405
斗战神免费挖矿脚本 发布:2024-11-05 19:53:25 浏览:662
网吧服务器分别是什么 发布:2024-11-05 19:45:32 浏览:389
忍3无伤脚本 发布:2024-11-05 19:11:40 浏览:306