冒泡排序法python
Ⅰ python冒泡排序法的问题
选A,想了解清楚,就找找冒泡排序的算法。
Ⅱ python使用冒泡排序
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。
def bubbleSort(arr):
n = len(arr)
# 遍历所有数组元素
for i in range(n):
# Last i elements are already in place
for j in range(0, n-i-1):
if arr[j] > arr[j+1] :
arr[j], arr[j+1] = arr[j+1], arr[j]
arr = [64, 34, 25, 12, 22, 11, 90]
bubbleSort(arr)
print ("排序后的数组:")
for i in range(len(arr)):
print ("%d" %arr[i])
Ⅲ python包含什么算法
Python基础算法有哪些?
1.
冒泡排序:是一种简单直观的排序算法。重复地走访过要排序的数列,一次比较两个元素,如果顺序错误就交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该排序已经完成。
2.
插入排序:没有冒泡排序和选择排序那么粗暴,其原理最容易理解,插入排序是一种最简单直观的排序算法啊,它的工作原理是通过构建有序序列,对于未排序数据在已排序序列中从后向前排序,找到对应位置。
3.
希尔排序:也被叫做递减增量排序方法,是插入排序的改进版本。希尔排序是基于插入排序提出改进方法的排序算法,先将整个待排序的记录排序分割成为若干个子序列分别进行直接插入排序,待整个序列中的记录基本有序时,再对全记录进行依次直接插入排序。
4. 归并排序:是建立在归并操作上的一种有效的排序算法。该算法是采用分治法Divide and的一个非常典型的应用。
5. 快速排序:由东尼·霍尔所发展的一种排序算法。又是一种分而治之思想在排序算法上的典型应用,本质上快速排序应该算是冒泡排序基础上的递归分治法。
6.
堆排序:是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质,即子结点的键值或索引总是小于它的父结点。
7.
计算排序:其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中,作为一种线性时间复杂度的排序,计算排序要求输入的数据必须是具有确定范围的整数。
Ⅳ python算法有哪些
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
一个算法应该具有以下七个重要的特征:
①有穷性(Finiteness):算法的有穷性是指算法必须能在执行有限个步骤之后终止;
②确切性(Definiteness):算法的每一步骤必须有确切的定义;
③输入项(Input):一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输 入是指算法本身定出了初始条件;
④输出项(Output):一个算法有一个或多个输出,以反映对输入数据加工后的结果。没 有输出的算法是毫无意义的;
⑤可行性(Effectiveness):算法中执行的任何计算步骤都是可以被分解为基本的可执行 的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性);
⑥高效性(High efficiency):执行速度快,占用资源少;
⑦健壮性(Robustness):对数据响应正确。
相关推荐:《Python基础教程》
五种常见的Python算法:
1、选择排序
2、快速排序
3、二分查找
4、广度优先搜索
5、贪婪算法
Ⅳ 面试官常问十大经典算法排序(用Python实现)
算法是一种与语言无关的东西,更确切地说就算解决问题的思路,就是一个通用的思想的问题。代码本身不重要,算法思想才是重中之重
我们在面试的时候总会被问到一下算法,虽然算法是一些基础知识,但是难起来也会让人非常头疼。
排序算法应该算是一些简单且基础的算法,但是我们可以从简单的算法排序锻炼我们的算法思维。这里我就介绍经典十大算法用python是怎么实现的。
十大经典算法可以分为两大类:
比较排序: 通过对数组中的元素进行比较来实现排序。
非比较排序: 不通过比较来决定元素间的相对次序。
算法复杂度
冒泡排序比较简单,几乎所有语言算法都会涉及的冒泡算法。
基本原理是两两比较待排序数据的大小 ,当两个数据的次序不满足顺序条件时即进行交换,反之,则保持不变。
每次选择一个最小(大)的,直到所有元素都被输出。
将第一个元素逐个插入到前面的有序数中,直到插完所有元素为止。
从大范围到小范围进行比较-交换,是插入排序的一种,它是针对直接插入排序算法的改进。先对数据进行预处理,使其基本有序,然后再用直接插入的排序算法排序。
该算法是采用 分治法 对集合进行排序。
把长度为n的输入序列分成两个长度为n/2的子序列,对这两个子序列分别采用归并排序,最终合并成序列。
选取一个基准值,小数在左大数在在右。
利用堆这种数据结构所设计的一种排序算法。
堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。利用最大堆和最小堆的特性。
采用字典计数-还原的方法,找出待排序的数组中最大和最小的元素,统计数组中每个值为i的元素出现的次数,对所有的计数累加,将每个元素放在新数组依次排序。
设置一个定量的数组当作空桶;遍历输入数据,并且把数据一个一个放到对应的桶里去;对每个不是空的桶进行排序;从不是空的桶里把排好序的数据拼接起来。
元素分布在桶中:
然后,元素在每个桶中排序:
取得数组中的最大数,并取得位数;从最低位开始取每个位组成新的数组;然后进行计数排序。
上面就是我整理的十大排序算法,希望能帮助大家在算法方面知识的提升。看懂之后可以去试着自己到电脑上运行一遍。最后说一下每个排序是没有调用数据的,大家记得实操的时候要调用。
参考地址:https://www.runoob.com/w3cnote/ten-sorting-algorithm.html
Ⅵ Python冒泡排序注意要点实例详解
Python冒泡排序注意要点实例详解
文给大家介绍了python冒泡排序知识,涉及到冒泡排序主要的细节问题,本文通过实例代码给大家讲解,介绍的非常详细,具有参考借鉴价值,感兴趣的朋友一起看看吧
冒泡排序注意三点:
1. 第一层循环可不用循环所有元素。
2.两层循环变量与第一层的循环变量相关联。
3.第二层循环,最终必须循环集合内所有元素。
示例代码一:
1.第一层循环,只循环n-1个元素。
2.当第一层循环变量为n-1时,第二层循环所有元素。
s = [3, 4, 1, 6, 2, 9, 7, 0, 8, 5]
# bubble_sort
for i in range(0, len(s) - 1):
for j in range(i + 1, 0, -1):
if s[j] < s[j - 1]:
s[j], s[j - 1] = s[j - 1], s[j]
for m in range(0, len(s)):
print(s[m])
示例代码二:
1.第一层循环所有元素。
2.第二层也循环所有元素。
s = [3, 4, 1, 6, 2, 9, 7, 0, 8, 5]
for i in range(0, len(s)):
for j in range(i, 0, -1):
if s[j] < s[j - 1]:
s[j], s[j - 1] = s[j - 1], s[j]
for m in range(0, len(s)):
print(s[m])
以上所述是小编给大家介绍的python冒泡排序算法注意要点,希望对大家有所帮助
Ⅶ python冒泡排序简单实现方法
python冒泡排序简单实现方法
这篇文章主要介绍了python冒泡排序简单实现方法,实例分析了Python冒泡排序的简单实现技巧,具有一定参考借鉴价值。
分享给大家供大家参考。具体实现方法如下:
#!/usr/bin/pythonimportrandomdefbubble_sort(data): length=len(data) foriinrange(len(data)-1): forjinrange(len(data)-1): if(data[j] < data[j+1]): tmp=data[j] data[j]=data[j+1] data[j+1]=tmpr=random.Random()data=[]forninrange(0,20): data.append(r.randint(1,300))printdata,len(data)bubble_sort(data)printdata
运行结果如下:
[115, 14, 246, 125, 94, 78, 275, 163, 64, 72, 245, 1, 97, 53, 86, 270, 137, 69, 74, 182] 20
[275, 270, 246, 245, 182, 163, 137, 125, 115, 97, 94, 86, 78, 74, 72, 69, 64, 53, 14, 1]
希望本文所述对大家的Python程序设计有所帮助。