python模块详解
㈠ python库与模块的区别是什么
Python库与模块的区别是什么
模块、库主要区别在于他们的定义与所指范围不同。
模块:包含并且有组织的代码片段为模块,sample.py 其中文件名smaple为模块名字。
模块是一种以.py为后缀的文件,在.py文件中定义了一些常量和函数。模块的名称是该.py文件的名称。模块的名称作为一个全局变量__name__的取值可以被其他模块获取或导入。模块的导入通过ipmort来实现。
库:库的概念是具有相关功能模块的集合。这也是正是Python的一大特色之一,即具有强大的标准库,还有第三方库以及自定义模块。
Python中的库是借用其他编程语言的概念,没有特别具体的定义,Python库着重强调其功能性。在Python中,具有某些功能的模块和包都可以被称作库。模块有诸多函数组成,包由诸多模块机构化组成,库中也可以包含包、模块和函数。
更多技术请关注Python视频教程。
㈡ 万字干货,Python语法大合集,一篇文章带你入门
这份资料非常纯粹,只有Python的基础语法,专门针对想要学习Python的小白。
Python中用#表示单行注释,#之后的同行的内容都会被注释掉。
使用三个连续的双引号表示多行注释,两个多行注释标识之间内容会被视作是注释。
Python当中的数字定义和其他语言一样:
我们分别使用+, -, *, /表示加减乘除四则运算符。
这里要注意的是,在Python2当中,10/3这个操作会得到3,而不是3.33333。因为除数和被除数都是整数,所以Python会自动执行整数的计算,帮我们把得到的商取整。如果是10.0 / 3,就会得到3.33333。目前Python2已经不再维护了,可以不用关心其中的细节。
但问题是Python是一个 弱类型 的语言,如果我们在一个函数当中得到两个变量,是无法直接判断它们的类型的。这就导致了同样的计算符可能会得到不同的结果,这非常蛋疼。以至于程序员在运算除法的时候,往往都需要手工加上类型转化符,将被除数转成浮点数。
在Python3当中拨乱反正,修正了这个问题,即使是两个整数相除,并且可以整除的情况下,得到的结果也一定是浮点数。
如果我们想要得到整数,我们可以这么操作:
两个除号表示 取整除 ,Python会为我们保留去除余数的结果。
除了取整除操作之外还有取余数操作,数学上称为取模,Python中用%表示。
Python中支持 乘方运算 ,我们可以不用调用额外的函数,而使用**符号来完成:
当运算比较复杂的时候,我们可以用括号来强制改变运算顺序。
Python中用首字母大写的True和False表示真和假。
用and表示与操作,or表示或操作,not表示非操作。而不是C++或者是Java当中的&&, || 和!。
在Python底层, True和False其实是1和0 ,所以如果我们执行以下操作,是不会报错的,但是在逻辑上毫无意义。
我们用==判断相等的操作,可以看出来True==1, False == 0.
我们要小心Python当中的bool()这个函数,它并不是转成bool类型的意思。如果我们执行这个函数,那么 只有0会被视作是False,其他所有数值都是True :
Python中用==判断相等,>表示大于,>=表示大于等于, <表示小于,<=表示小于等于,!=表示不等。
我们可以用and和or拼装各个逻辑运算:
注意not,and,or之间的优先级,其中not > and > or。如果分不清楚的话,可以用括号强行改变运行顺序。
关于list的判断,我们常用的判断有两种,一种是刚才介绍的==,还有一种是is。我们有时候也会简单实用is来判断,那么这两者有什么区别呢?我们来看下面的例子:
Python是全引用的语言,其中的对象都使用引用来表示。is判断的就是 两个引用是否指向同一个对象 ,而==则是判断两个引用指向的具体内容是否相等。举个例子,如果我们把引用比喻成地址的话,is就是判断两个变量的是否指向同一个地址,比如说都是沿河东路XX号。而==则是判断这两个地址的收件人是否都叫张三。
显然,住在同一个地址的人一定都叫张三,但是住在不同地址的两个人也可以都叫张三,也可以叫不同的名字。所以如果a is b,那么a == b一定成立,反之则不然。
Python当中对字符串的限制比较松, 双引号和单引号都可以表示字符串 ,看个人喜好使用单引号或者是双引号。我个人比较喜欢单引号,因为写起来方便。
字符串也支持+操作,表示两个字符串相连。除此之外,我们把两个字符串写在一起,即使没有+,Python也会为我们拼接:
我们可以使用[]来查找字符串当中某个位置的字符,用 len 来计算字符串的长度。
我们可以在字符串前面 加上f表示格式操作 ,并且在格式操作当中也支持运算,比如可以嵌套上len函数等。不过要注意,只有Python3.6以上的版本支持f操作。
最后是None的判断,在Python当中None也是一个对象, 所有为None的变量都会指向这个对象 。根据我们前面所说的,既然所有的None都指向同一个地址,我们需要判断一个变量是否是None的时候,可以使用is来进行判断,当然用==也是可以的,不过我们通常使用is。
理解了None之后,我们再回到之前介绍过的bool()函数,它的用途其实就是判断值是否是空。所有类型的 默认空值会被返回False ,否则都是True。比如0,"",[], {}, ()等。
除了上面这些值以外的所有值传入都会得到True。
Python当中的标准输入输出是 input和print 。
print会输出一个字符串,如果传入的不是字符串会自动调用__str__方法转成字符串进行输出。 默认输出会自动换行 ,如果想要以不同的字符结尾代替换行,可以传入end参数:
使用input时,Python会在命令行接收一行字符串作为输入。可以在input当中传入字符串,会被当成提示输出:
Python支持 三元表达式 ,但是语法和C++不同,使用if else结构,写成:
上段代码等价于:
Python中用[]表示空的list,我们也可以直接在其中填充元素进行初始化:
使用append和pop可以在list的末尾插入或者删除元素:
list可以通过[]加上下标访问指定位置的元素,如果是负数,则表示 倒序访问 。-1表示最后一个元素,-2表示倒数第二个,以此类推。如果访问的元素超过数组长度,则会出发 IndexError 的错误。
list支持切片操作,所谓的切片则是从原list当中 拷贝 出指定的一段。我们用start: end的格式来获取切片,注意,这是一个 左闭右开区间 。如果留空表示全部获取,我们也可以额外再加入一个参数表示步长,比如[1:5:2]表示从1号位置开始,步长为2获取元素。得到的结果为[1, 3]。如果步长设置成-1则代表反向遍历。
如果我们要指定一段区间倒序,则前面的start和end也需要反过来,例如我想要获取[3: 6]区间的倒序,应该写成[6:3:-1]。
只写一个:,表示全部拷贝,如果用is判断拷贝前后的list会得到False。可以使用del删除指定位置的元素,或者可以使用remove方法。
insert方法可以 指定位置插入元素 ,index方法可以查询某个元素第一次出现的下标。
list可以进行加法运算,两个list相加表示list当中的元素合并。 等价于使用extend 方法:
我们想要判断元素是否在list中出现,可以使用 in关键字 ,通过使用len计算list的长度:
tuple和list非常接近,tuple通过()初始化。和list不同, tuple是不可变对象 。也就是说tuple一旦生成不可以改变。如果我们修改tuple,会引发TypeError异常。
由于小括号是有改变优先级的含义,所以我们定义单个元素的tuple, 末尾必须加上逗号 ,否则会被当成是单个元素:
tuple支持list当中绝大部分操作:
我们可以用多个变量来解压一个tuple:
解释一下这行代码:
我们在b的前面加上了星号, 表示这是一个list 。所以Python会在将其他变量对应上值的情况下,将剩下的元素都赋值给b。
补充一点,tuple本身虽然是不可变的,但是 tuple当中的可变元素是可以改变的 。比如我们有这样一个tuple:
我们虽然不能往a当中添加或者删除元素,但是a当中含有一个list,我们可以改变这个list类型的元素,这并不会触发tuple的异常:
dict也是Python当中经常使用的容器,它等价于C++当中的map,即 存储key和value的键值对 。我们用{}表示一个dict,用:分隔key和value。
对 。我们用{}表示一个dict,用:分隔key和value。
dict的key必须为不可变对象,所以 list、set和dict不可以作为另一个dict的key ,否则会抛出异常:
我们同样用[]查找dict当中的元素,我们传入key,获得value,等价于get方法。
我们可以call dict当中的keys和values方法,获取dict当中的所有key和value的集合,会得到一个list。在Python3.7以下版本当中,返回的结果的顺序可能和插入顺序不同,在Python3.7及以上版本中,Python会保证返回的顺序和插入顺序一致:
我们也可以用in判断一个key是否在dict当中,注意只能判断key。
如果使用[]查找不存在的key,会引发KeyError的异常。如果使用 get方法则不会引起异常,只会得到一个None :
setdefault方法可以 为不存在的key 插入一个value,如果key已经存在,则不会覆盖它:
我们可以使用update方法用另外一个dict来更新当前dict,比如a.update(b)。对于a和b交集的key会被b覆盖,a当中不存在的key会被插入进来:
我们一样可以使用del删除dict当中的元素,同样只能传入key。
Python3.5以上的版本支持使用**来解压一个dict:
set是用来存储 不重复元素 的容器,当中的元素都是不同的,相同的元素会被删除。我们可以通过set(),或者通过{}来进行初始化。注意当我们使用{}的时候,必须要传入数据,否则Python会将它和dict弄混。
set当中的元素也必须是不可变对象,因此list不能传入set。
可以调用add方法为set插入元素:
set还可以被认为是集合,所以它还支持一些集合交叉并补的操作。
set还支持 超集和子集的判断 ,我们可以用大于等于和小于等于号判断一个set是不是另一个的超集或子集:
和dict一样,我们可以使用in判断元素在不在set当中。用可以拷贝一个set。
Python当中的判断语句非常简单,并且Python不支持switch,所以即使是多个条件,我们也只能 罗列if-else 。
我们可以用in来循环迭代一个list当中的内容,这也是Python当中基本的循环方式。
如果我们要循环一个范围,可以使用range。range加上一个参数表示从0开始的序列,比如range(10),表示[0, 10)区间内的所有整数:
如果我们传入两个参数,则 代表迭代区间的首尾 。
如果我们传入第三个元素,表示每次 循环变量自增的步长 。
如果使用enumerate函数,可以 同时迭代一个list的下标和元素 :
while循环和C++类似,当条件为True时执行,为false时退出。并且判断条件不需要加上括号:
Python当中使用 try和except捕获异常 ,我们可以在except后面限制异常的类型。如果有多个类型可以写多个except,还可以使用else语句表示其他所有的类型。finally语句内的语法 无论是否会触发异常都必定执行 :
在Python当中我们经常会使用资源,最常见的就是open打开一个文件。我们 打开了文件句柄就一定要关闭 ,但是如果我们手动来编码,经常会忘记执行close操作。并且如果文件异常,还会触发异常。这个时候我们可以使用with语句来代替这部分处理,使用with会 自动在with块执行结束或者是触发异常时关闭打开的资源 。
以下是with的几种用法和功能:
凡是可以使用in语句来迭代的对象都叫做 可迭代对象 ,它和迭代器不是一个含义。这里只有可迭代对象的介绍,想要了解迭代器的具体内容,请移步传送门:
Python——五分钟带你弄懂迭代器与生成器,夯实代码能力
当我们调用dict当中的keys方法的时候,返回的结果就是一个可迭代对象。
我们 不能使用下标来访问 可迭代对象,但我们可以用iter将它转化成迭代器,使用next关键字来获取下一个元素。也可以将它转化成list类型,变成一个list。
使用def关键字来定义函数,我们在传参的时候如果指定函数内的参数名, 可以不按照函数定义的顺序 传参:
可以在参数名之前加上*表示任意长度的参数,参数会被转化成list:
也可以指定任意长度的关键字参数,在参数前加上**表示接受一个dict:
当然我们也可以两个都用上,这样可以接受任何参数:
传入参数的时候我们也可以使用*和**来解压list或者是dict:
Python中的参数 可以返回多个值 :
函数内部定义的变量即使和全局变量重名,也 不会覆盖全局变量的值 。想要在函数内部使用全局变量,需要加上 global 关键字,表示这是一个全局变量:
Python支持 函数式编程 ,我们可以在一个函数内部返回一个函数:
Python中可以使用lambda表示 匿名函数 ,使用:作为分隔,:前面表示匿名函数的参数,:后面的是函数的返回值:
我们还可以将函数作为参数使用map和filter,实现元素的批量处理和过滤。关于Python中map、rece和filter的使用,具体可以查看之前的文章:
五分钟带你了解map、rece和filter
我们还可以结合循环和判断语来给list或者是dict进行初始化:
使用 import语句引入一个Python模块 ,我们可以用.来访问模块中的函数或者是类。
我们也可以使用from import的语句,单独引入模块内的函数或者是类,而不再需要写出完整路径。使用from import *可以引入模块内所有内容(不推荐这么干)
可以使用as给模块内的方法或者类起别名:
我们可以使用dir查看我们用的模块的路径:
这么做的原因是如果我们当前的路径下也有一个叫做math的Python文件,那么 会覆盖系统自带的math的模块 。这是尤其需要注意的,不小心会导致很多奇怪的bug。
我们来看一个完整的类,相关的介绍都在注释当中
以上内容的详细介绍之前也有过相关文章,可以查看:
Python—— slots ,property和对象命名规范
下面我们来看看Python当中类的使用:
这里解释一下,实例和对象可以理解成一个概念,实例的英文是instance,对象的英文是object。都是指类经过实例化之后得到的对象。
继承可以让子类 继承父类的变量以及方法 ,并且我们还可以在子类当中指定一些属于自己的特性,并且还可以重写父类的一些方法。一般我们会将不同的类放在不同的文件当中,使用import引入,一样可以实现继承。
我们创建一个蝙蝠类:
我们再创建一个蝙蝠侠的类,同时继承Superhero和Bat:
执行这个类:
我们可以通过yield关键字创建一个生成器,每次我们调用的时候执行到yield关键字处则停止。下次再次调用则还是从yield处开始往下执行:
除了yield之外,我们还可以使用()小括号来生成一个生成器:
关于生成器和迭代器更多的内容,可以查看下面这篇文章:
五分钟带你弄懂迭代器与生成器,夯实代码能力
我们引入functools当中的wraps之后,可以创建一个装饰器。装饰器可以在不修改函数内部代码的前提下,在外面包装一层其他的逻辑:
装饰器之前也有专门的文章详细介绍,可以移步下面的传送门:
一文搞定Python装饰器,看完面试不再慌
不知道有多少小伙伴可以看到结束,原作者的确非常厉害,把Python的基本操作基本上都囊括在里面了。如果都能读懂并且理解的话,那么Python这门语言就算是入门了。
如果你之前就有其他语言的语言基础,我想本文读完应该不用30分钟。当然在30分钟内学会一门语言是不可能的,也不是我所提倡的。但至少通过本文我们可以做到熟悉Python的语法,知道大概有哪些操作,剩下的就要我们亲自去写代码的时候去体会和运用了。
根据我的经验,在学习一门新语言的前期,不停地查阅资料是免不了的。希望本文可以作为你在使用Python时候的查阅文档。
最后,我这里有各种免费的编程类资料,有需要的及时私聊我,回复"学习",分享给大家,正在发放中............
㈢ python有哪些模块 md5
python的md5模块使用非常简单,包括以下几个函数:
md5.new([arg])
返回一个md5对象,如果给出参数,则相当于调用了update(arg)
md5.updte(arg)
用string参数arg更新md5对象
md5.digest()
返回16字节的摘要,由传给update的string生成,摘要没有ascii字符
md5.hexdigest()
以16进制的形式返回摘要
代码示例:
01.#!/usr/bin/python
02.import
sys
03.import
md5
04.
05.str=sys.argv[1]
06.key =
md5.new()
07.key.update(str)
08.print
key.hexdigest()
09.str=sys.argv[1]
保存代码为md.py
1.[fengyj@fengyj
python]$ chmod +x md.py
2.[fengyj@fengyj
python]$ ./md.py fengyajie
3.
㈣ python标准库中常用的网络相关模块有哪些
标准库 Python拥有一个强大的标准库。Python语言的核心只包含数字、字符串、列表、字典、文件等常见类型和函数,而由Python标准库提供了系统管理、网络通信、文本处理、数据库接口、图形系统、XML处理等额外的功能。 Python标准库的主要功能有: 1.文本处理,包含文本格式化、正则表达式匹配、文本差异计算与合并、Unicode支持,二进制数据处理等功能 2.文件处理,包含文件操作、创建临时文件、文件压缩与归档、操作配置文件等功能 3.操作系统功能,包含线程与进程支持、IO复用、日期与时间处理、调用系统函数、日志(logging)等功能 4.网络通信,包含网络套接字,SSL加密通信、异步网络通信等功能 5.网络协议,支持HTTP,FTP,SMTP,POP,IMAP,NNTP,XMLRPC等多种网络协议,并提供了编写网络服务器的框架 6.W3C格式支持,包含HTML,SGML,XML的处理。 7.其它功能,包括国际化支持、数学运算、HASH、Tkinter等 Python社区提供了大量的第三方模块,使用方式与标准库类似。它们的功能覆盖科学计算、Web开发、数据库接口、图形系统多个领域。第三方模块可以使用Python或者C语言编写。SWIG,SIP常用于将C语言编写的程序库转化为Python模块。Boost C++ Libraries包含了一组函式库,Boost.Python,使得以Python或C++编写的程式能互相调用。Python常被用做其他语言与工具之间的“胶水”语言。 着名第三方库 1.Web框架 Django: 开源Web开发框架,它鼓励快速开发,并遵循MVC设计,开发周期短。 ActiveGrid: 企业级的Web2.0解决方案。 Karrigell: 简单的Web框架,自身包含了Web服务,py脚本引擎和纯python的数据库PyDBLite。 Tornado: 一个轻量级的Web框架,内置非阻塞式服务器,而且速度相当快 webpy: 一个小巧灵活的Web框架,虽然简单但是功能强大。 CherryPy: 基于Python的Web应用程序开发框架。 Pylons: 基于Python的一个极其高效和可靠的Web开发框架。 Zope: 开源的Web应用服务器。 TurboGears: 基于Python的MVC风格的Web应用程序框架。 Twisted: 流行的网络编程库,大型Web框架。 Quixote: Web开发框架。 2.科学计算 Matplotlib: 用Python实现的类matlab的第三方库,用以绘制一些高质量的数学二维图形。 SciPy: 基于Python的matlab实现,旨在实现matlab的所有功能。 NumPy: 基于Python的科学计算第三方库,提供了矩阵,线性代数,傅立叶变换等等的解决方案。 3.GUI PyGtk: 基于Python的GUI程序开发GTK+库。 PyQt: 用于Python的QT开发库。 WxPython: Python下的GUI编程框架,与MFC的架构相似。 4.其它 BeautifulSoup: 基于Python的HTML/XML解析器,简单易用。 PIL: 基于Python的图像处理库,功能强大,对图形文件的格式支持广泛。 PyGame: 基于Python的多媒体开发和游戏软件开发模块。 Py2exe: 将python脚本转换为windows上可以独立运行的可执行程序。
㈤ 盘点Python常用的模块和包
模块
1.定义
计算机在开发过程中,代码越写越多,也就越难以维护,所以为了编写可维护的代码,我们会把函数进行分组,放在不同的文件里。在python里,一个.py文件就是一个模块。
2.优点:
提高代码的可维护性。
提高代码的复用,当模块完成时就可以在其他代码中调用。
引用其他模块,包含python内置模块和其他第三方模块。
避免函数名和变量名等名称冲突。
python内建模块:
1.sys模块
2.random模块
3.os模块:
os.path:讲解
https://www.cnblogs.com/yufeihlf/p/6179547.html
数据可视化
1.matplotlib :
是Python可视化程序库的泰斗,它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近。比如pandas和Seaborn就是matplotlib的外包,它们让你能用更少的代码去调用 matplotlib的方法。
访问:
https://matplotlib.org/
颜色:
https://www.cnblogs.com/darkknightzh/p/6117528.html
教程:
https://wizardforcel.gitbooks.io/matplotlib-user-guide/3.1.html
2.Seaborn:
它是构建在matplotlib的基础上的,用简洁的代码来制作好看的图表。Seaborn跟matplotlib最大的区别就是它的默认绘图风格和色彩搭配都具有现代美感。
访问:
http://seaborn.pydata.org/index.html
3.ggplot:
gplot 跟 matplotlib 的不同之处是它允许你叠加不同的图层来完成一幅图
访问:
http://ggplot.yhathq.com/
4.Mayavi:
Mayavi2完全用Python编写,因此它不但是一个方便实用的可视化软件,而且可以方便地用Python编写扩展,嵌入到用户编写的Python程序中,或者直接使用其面向脚本的API:mlab快速绘制三维图
访问:http://code.enthought.com/pages/mayavi-project.html
讲解:https://blog.csdn.net/ouening/article/details/76595427https://www.jianshu.com/p/81e6f4f1cdd8
5.TVTK:
TVTK库对标准的VTK库进行包装,提供了Python风格的API、支持Trait属性和numpy的多维数组。
VTK (http://www.vtk.org/) 是一套三维的数据可视化工具,它由C++编写,包涵了近千个类帮助我们处理和显示数据
讲解:https://docs.huihoo.com/scipy/scipy-zh-cn/tvtk_intro.html
机器学习
1.Scikit-learn
是一个简单且高效的数据挖掘和数据分析工具,易上手,可以在多个上下文中重复使用。它基于NumPy, SciPy 和 matplotlib,开源,可商用(基于 BSD 许可)。
访问:
讲解:https://blog.csdn.net/finafily0526/article/details/79318401
2.Tensorflow
最初由谷歌机器智能科研组织中的谷歌大脑团队(Google Brain Team)的研究人员和工程师开发。该系统设计的初衷是为了便于机器学习研究,能够更快更好地将科研原型转化为生产项目。
相关推荐:《Python视频教程》
Web框架
1.Tornado
访问:http://www.tornadoweb.org/en/stable/
2.Flask
访问:http://flask.pocoo.org/
3.Web.py
访问:http://webpy.org/
4.django
https://www.djangoproject.com/
5.cherrypy
http://cherrypy.org/
6.jinjs
http://docs.jinkan.org/docs/jinja2/
GUI 图形界面
1.Tkinter
https://wiki.python.org/moin/TkInter/
2.wxPython
https://www.wxpython.org/
3.PyGTK
http://www.pygtk.org/
4.PyQt
https://sourceforge.net/projects/pyqt/
5.PySide
http://wiki.qt.io/Category:LanguageBindings::PySide
科学计算
教程
https://docs.huihoo.com/scipy/scipy-zh-cn/index.html#
1.numpy
访问
http://www.numpy.org/
讲解
https://blog.csdn.net/lm_is_dc/article/details/81098805
2.sympy
sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值、求极限、解方程、求积分、微分方程、级数展开、矩阵运算等等计算问题
访问
https://docs.sympy.org/0.7.1/guide.html#guide
讲解
https://www.jianshu.com/p/339c91ae9f41
解方程
https://www.cnblogs.com/zyg123/p/10549354.html
3.SciPy
官网
https://www.scipy.org/
讲解
https://blog.csdn.net/wsp_1138886114/article/details/80444621
4.pandas
官网
http://pandas.pydata.org/
讲解
https://www.cnblogs.com/linux-wangkun/p/5903945.html
5.blaze
官网
http://blaze.readthedocs.io/en/latest/index.html
密码学
1.cryptography
https://pypi.python.org/pypi/cryptography/
2.hashids
http://www.oschina.net/p/hashids
3.Paramiko
http://www.paramiko.org/
4.Passlib
https://pythonhosted.org/passlib/
5.PyCrypto
https://pypi.python.org/pypi/pycrypto
6.PyNacl
http://pynacl.readthedocs.io/en/latest/
爬虫相关
requests
http://www.python-requests.org/
scrapy
https://scrapy.org/
pyspider
https://github.com/binux/pyspider
portia
https://github.com/scrapinghub/portia
html2text
https://github.com/Alir3z4/html2text
BeautifulSoup
https://www.crummy.com/software/BeautifulSoup/
lxml
http://lxml.de/
selenium
http://docs.seleniumhq.org/
mechanize
https://pypi.python.org/pypi/mechanize
PyQuery
https://pypi.python.org/pypi/pyquery/
creepy
https://pypi.python.org/pypi/creepy
gevent
一个高并发的网络性能库
http://www.gevent.org/
图像处理
bigmoyan
http://scikit-image.org/
Python Imaging Library(PIL)
http://www.pythonware.com/procts/pil/
pillow:
http://pillow.readthedocs.io/en/latest/
自然语言处理
1.nltk:
http://www.nltk.org/
教程
https://blog.csdn.net/wizardforcel/article/details/79274443
2.snownlp
https://github.com/isnowfy/snownlp
3.Pattern
https://github.com/clips/pattern
4.TextBlob
http://textblob.readthedocs.io/en/dev/
5.Polyglot
https://pypi.python.org/pypi/polyglot
6.jieba:
https://github.com/fxsjy/jieba
数据库驱动
mysql-python
https://sourceforge.net/projects/mysql-python/
PyMySQL
https://github.com/PyMySQL/PyMySQL
PyMongo
https://docs.mongodb.com/ecosystem/drivers/python/
pymongo
MongoDB库
访问:https://pypi.python.org/pypi/pymongo/
redis
Redis库
访问:https://pypi.python.org/pypi/redis/
cxOracle
Oracle库
访问:https://pypi.python.org/pypi/cx_Oracle
SQLAlchemy
SQL工具包及对象关系映射(ORM)工具
访问:http://www.sqlalchemy.org/
peewee,
SQL工具包及对象关系映射(ORM)工具
访问:https://pypi.python.org/pypi/peewee
torndb
Tornado原装DB
访问:https://github.com/bdarnell/torndb
Web
pycurl
URL处理工具
smtplib模块
发送电子邮件
其他库暂未分类
1.PyInstaller:
是一个十分有用的第三方库,它能够在Windows、Linux、 Mac OS X 等操作系统下将 Python 源文件打包,通过对源文件打包, Python 程序可以在没有安装 Python 的环境中运行,也可以作为一个 独立文件方便传递和管理。
2.Ipython
一种交互式计算和开发环境
讲解
https://www.cnblogs.com/zzhzhao/p/5295476.html
命令
ls、cd 、run、edit、clear、exist
㈥ python中的time模块
time模块是python专门用来处理时间的内建库。
下面我们来记录一些基本使用方法。
ps: 用到了一些概念,比如unix时间戳,感兴趣的同学自行网络。
下文参考他人博客内容, 传送门
time.time()函数获取的是Unix时间戳。
返回的是一个float类型的数值。
在python中的time模块中定义了一个叫struct_time的元组,是用来构建时间对象的。
struct_time元组共9个元素组成,如下图:
这个函数可以接受一个unix时间戳,然后转换为struct_time。
如果不传入second参数,则会返回当前时间的时间戳的struct_time对象
再试试传入当前时间的时间戳,是否能得到上面的struct_time呢?
和我们预期的结果一致。
和localtime函数类似,默认情况gmtime函数获取当前时间的utc时间。
返回当前时间的utc时间的struct_time对象。
也可以传入任意的unix时间戳,来得到utc时间。
将一个时间戳struct_time对象转换为时间戳。
传入一个struct_time对象,返回"Sun Jun 20 23:21:05 1993"这种格式的字符串。不传参数,返回当前时间的这种格式的字符串。
传入格式和struct_time,返回按照format格式格式化后的时间字符串。
格式占位符可以参考下图:
将字符串时间转为struct_time,time.strftime()的逆向操作。
㈦ 详解Python中import方法引入模块
在python用import或者from...import或者from...import...as...来导入相应的模块,作用和使用方法与C语言的include头文件类似。其实就是引入某些成熟的函数库和成熟的方法,避免重复造轮子,提高开发速度。
python的import方法可以引入系统的模块,也可以引入我们自己写好的共用模块,这点和php非常相似,但是它们的具体细节还不是很一样。因为php是在引入的时候指明引入文件的具体路径,而python中不能够写文件路径进行引入。
下面总结一下import的几种情况:
python包含子目录中的模块方法比较简单,关键是能够在sys.path里面找到通向模块文件的路径。
下面将具体介绍几种常用情况:
(1)主程序与模块程序在同一目录下:
如下面程序结构:
`-- src
|-- mod1.py
`-- test1.py
若在程序test1.py中导入模块mod1, 则直接使用import mod1或from mod1 import *;
(2)主程序所在目录是模块所在目录的父(或祖辈)目录
如下面程序结构:
`-- src
|-- mod1.py
|-- mod2
| `-- mod2.py
`-- test1.py
若在程序test1.py中导入模块mod2, 需要在mod2文件夹中建立空文件__init__.py文件(也可以在该文件中自定义输出模块接口); 然后使用 from mod2.mod2 import * 或import mod2.mod2.
(3)主程序导入上层目录中模块或其他目录(平级)下的模块
如下面程序结构:
`-- src
|-- mod1.py
|-- mod2
| `-- mod2.py
|-- sub
| `-- test2.py
`-- test1.py
若在程序test2.py中导入模块mod1和mod2。首先需要在mod2下建立__init__.py文件(同(2)),src下不必建立该文件。然后调用方式如下:
下面程序执行方式均在程序文件所在目录下执行,如test2.py是在cd sub;之后执行python test2.py
而test1.py是在cd src;之后执行python test1.py; 不保证在src目录下执行python sub/test2.py成功。
import sys
sys.path.append("..")
import mod1
import mod2.mod2