当前位置:首页 » 编程语言 » python开源监控

python开源监控

发布时间: 2023-03-01 02:05:36

1. python 监控一个文件夹

笨办法是在循环中不断读取目录以及目录中文件的最后修改时间,如果有变更,则说说文件被修改。

这种办法需要不断的循环读取文件信息,这对cpu占用较高,同时也会产生一定的磁盘IO,短时间小范围使用尚可,如果长时间运行在服务器上,或者监控一个包含很多文件的目录则不可取。
办法之二是利用操作系统提供的功能来实现。
比如在Windows中,可以利用Windows API【ReadDirectoryChangesW】来实现。这可以免去大量的磁盘IO。因为文件修改的频率一般不高,可以使用定计时器进行循环,对cup的占用也会少很多。

2. Python五大应用领域是什么

一、网络爬虫


网络爬虫是Python比较常用的一个场景,国际上,google在前期大量地运用Python言语作为网络爬虫的根底,带动了整个Python言语的运用发展。


二、数据处理


Python有很齐备的生态环境。"大数据"分析中涉及到的分布式核算、数据可视化、数据库操作等,Python中都有成熟的模块能够挑选完结其功能。关于Hadoop-MapRece和Spark,都能够直接运用Python完结核算逻辑,这不管关于数据科学家仍是关于数据工程师而言都是十分便当的。


三、web开发


Python的诞生前史比Web还要早,由于Python是一种解说型的脚本言语,开发效率高,所以十分适合用来做Web开发。


Django 是 Python 编程言语驱动的一个开源模型-视图-控制器(MVC)风格的 Web 运用程序结构。运用 Django,咱们在几分钟之内就能够创建高品质、易维护、数据库驱动的运用程序。


四、数据分析


关于数据分析师来说,不只要自己理解数据背面的含义,而且还要给更直地展现数据的含义。


Scipy是一组专门解决科学核算中各种规范问题域的包的集合。Numpy是python科学核算的根底包。Pandas处理上千万的数据是一挥而就的工作,同时随后咱们也将看到它比sql有更强的表达能力,能够做很多复杂的操作,要写的code也更少。


五、人工智能


人工智能是现在十分火的一个方向,AI热潮让Python言语的未来充满了无限的潜力。现在释放出来的几个十分有影响力的AI结构,大多是Python的实现,为什么呢?


在人工智能大领域领域内的数据发掘、机器学习、神经网络、深度学习等方面都是主流的编程言语,得到广泛的支持和运用。人工智能的核心算法大部分仍是依赖于C/C++的,由于是核算密集型,需求十分精细的优化,还需求GPU、专用硬件之类的接口,这些都只要C/C++能做到。


关于Python五大应用领域是什么,环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习。

3. 去哪里找python的开源项目

GitHub是一个面向开源及私有软件项目的托管平台,因为只支持git 作为唯一的版本库格式进行托管,故名GitHub。作为开源代码库以及版本控制系统,Github拥有超过900万开发者用户。随着越来越多的应用程序转移到了云上,Github已经成为了管理软件开发以及发现已有代码的首选方法。在GitHub,用户可以十分轻易地找到海量的开源代码。

下面给大家介绍一些GitHub上25个开源项目:

(1)TensorFlow Models

如果你对机器学习和深度学习感兴趣,一定听说过TensorFlow。TensorFlow Models是一个开源存储库,可以找到许多与深度学习相关的库和模型。

(GitHub: https://github.com/tensorflow/models )

(2)Keras

Keras是一个高级神经网络API,用Python编写,能够在TensorFlow,CNTK或Theano之上运行。旨在完成深度学习的快速开发(GitHub: https://github.com/keras-team/keras )

(3)Flask

Flask 是一个微型的 Python 开发的 Web 框架,基于Werkzeug WSGI工具箱和Jinja2 模板引擎,使用BSD授权。

(GitHub: https://github.com/pallets/flask )

(4)scikit-learn

scikit-learn是一个用于机器学习的Python模块,基于 NumPy、SciPy 和 matplotlib 构建。,并遵循 BSD 许可协议。

(GitHub: https://github.com/scikit-learn )

(5)Zulip

Zulip是一款功能强大的开源群聊应用程序,它结合了实时聊天的即时性和线程对话的生产力优势。Zulip作为一个开源项目,被许多世界500强企业,大型组织以及其他需要实时聊天系统的用户选择使用,该系统允许用户每天轻松处理数百或数千条消息。Zulip拥有超过300名贡献者,每月合并超过500次提交,也是规模最大,发展最快的开源群聊项目。

(GitHub: https://github.com/zulip/zulip )

相关推荐:《Python入门教程》

(6)Django

Django 是 Python 编程语言驱动的一个开源模型-视图-控制器(MVC)风格的 Web 应用程序框架,旨在快速开发出清晰,实用的设计。使用 Django,我们在几分钟之内就可以创建高品质、易维护、数据库驱动的应用程序。

(GitHub: https://github.com/django/django )

(7)Rebound

Rebound 是一个当你得到编译错误时即时获取 Stack Overflow 结果的命令行工具。 就用 rebound 命令执行你的文件。这对程序员来说方便了不少。

(GitHub: https://github.com/shobrook/rebound )

(8)Google Images Download

这是一个命令行python程序,用于搜索Google Images上的关键字/关键短语,并可选择将图像下载到您的计算机。你也可以从另一个python文件调用此脚本。

(GitHub: https://github.com/hardikvasa/google-images-download )

(9)YouTube-dl

youtube-dl 是基于 Python 的命令行媒体文件下载工具,完全开源免费跨平台。用户只需使用简单命令并提供在线视频的网页地址即可让程序自动进行嗅探、下载、合并、命名和清理,最终得到已经命名的完整视频文件。

(GitHub: htt ps://github.com/rg3/youtube-dl )

(10)System Design Primer

此repo是一个系统的资源集合,可帮助你了解如何大规模构建系统。

(GitHub: https://github.com/donnemartin/system-design-primer )

(11)Mask R-CNN

Mask R-CNN用于对象检测和分割。这是对Python 3,Keras和TensorFlow的Mask R-CNN实现。该模型为图像中对象的每个实例生成边界框和分割蒙版。它基于特Feature Pyramid Network(FPN)和 ResNet101 backbone。

(GitHub: https://github.com/matterport/Mask_RCNN )

(12)Face Recognition

Face Recognition 是一个基于 Python 的人脸识别库,使用十分简便。这还提供了一个简单的face_recognition命令行工具,可以让您从命令行对图像文件夹进行人脸识别!

(GitHub: https://github.com/ageitgey/face_recognition )

(13)snallygaster

用于扫描HTTP服务器上的机密文件的工具。

(GitHub: https://github.com/hannob/snallygaster )

(14)Ansible

Ansible是一个极其简单的IT自动化系统。它可用于配置管理,应用程序部署,云配置,支持远程任务执行和多节点发布 - 包括通过负载平衡器轻松实现零停机滚动更新等操作。

(GitHub: https://github.com/ansible/ansible )

(15)Detectron

Detectron是Facebook AI 研究院开源的的软件系统,它实现了最先进的目标检测算法,包括Mask R-CNN。它是用Python编写的,由Caffe2深度学习框架提供支持。

(16)asciinema

终端会话记录器和asciinema.org的最佳搭档。

(GitHub: https://github.com/asciinema/asciinema )

(17)HTTPie

HTTPie 是一个开源的命令行的 HTTP 工具包,其目标是使与Web服务的CLI交互尽可能人性化。它提供了一个简单的http命令,允许使用简单自然的语法发送任意HTTP请求,并显示彩色输出。HTTPie可用于测试,调试以及通常与HTTP服务器交互。

(GitHub: https://github.com/jakubroztocil/httpie )

(18)You-Get

You-Get是一个小型命令行实用程序,用于从Web下载媒体内容(视频,音频,图像),支持国内外常用的视频网站。

(GitHub: https://github.com/soimort/you-get )

(19)Sentry

Sentry从根本上讲是一项服务,可以帮助用户实时监控和修复崩溃。基于Django构建,它包含一个完整的API,用于从任何语言、任何应用程序中发送事件。

(GitHub: https://github.com/getsentry/sentry )

(20)Tornado

Tornado是使用Python开发的全栈式(full-stack)Web框架和异步网络库,,最初是由FriendFeed上开发的。通过使用非阻塞网络I / O,Tornado可以扩展到数万个开放连接,是long polling、WebSockets和其他需要为用户维护长连接应用的理想选择。

(GitHub: https://github.com/tornadoweb/tornado )

(21)Magenta

Magenta是一个探索机器学习在创造艺术和音乐过程中的作用的研究项目。这主要涉及开发新的深度学习和强化学习算法,用于生成歌曲,图像,绘图等。但它也是构建智能工具和界面的探索,它允许艺术家和音乐家使用这些模型。

(GitHub: https://github.com/tensorflow/magenta )

(22)ZeroNet

ZeroNet是一个利用比特币的加密算法和BitTorrent技术提供的不受审查的网络,完全开源。

(GitHub: https://github.com/HelloZeroNet/ZeroNet )

(23)Gym

OpenAI Gym是一个用于开发和比较强化学习算法的工具包。这是Gym的开源库,可让让你访问标准化的环境。

(GitHub: https://github.com/openai/gym )

(24)Pandas

Pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。此外,它还有更广泛的目标,即成为所有语言中最强大,最灵活的开源数据分析/操作工具。它目前已经朝着这个目标迈进。

(GitHub: https://github.com/pandas-dev/pandas )

(25)Luigi

Luigi 是一个 Python 模块,可以帮你构建复杂的批量作业管道。处理依赖决议、工作流管理、可视化展示等等,内建 Hadoop 支持。(GitHub: https://github.com/spotify/luigi )

4. Python能用来做什么

Python 语言主要有以下用途:
1) 简单:Python 是一种代表简单主义思想的语言。阅读一个良好的 Python 程序就感觉像是在读英语一样,尽管这个英语的要求非常严格。Python 的这种伪代码本质是其优点之一,使用户能够专注于解决问题而不是去搞明白语言本身。
2) 易学:Python 有极其简单的语法,非常容易上手。
3) 免费、开源:Python 是 FLOSS(自由/开源软件)之一。简单来说,用户可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS 是基于一个团体分享知识的概念,这也是为什么 Python 如此优秀的原因之一:它由一群希望看到 Python 更加优秀的人创造,并被他们不断改进。
4) 高层语言:使用 Python 语言编写程序时,不用考虑如何管理程序使用的内存等底层细节。
5) 可移植性强:由于它的开源本质,Python 已经被移植在许多平台上。如果 Python 程序没有使用依赖于系统的特性,那么程序不用修改就可以在下述任意平台上面运行。这些平台包括 linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、Palm OS、QNX、VMS、Psion、Acom RISC OS、VxWorks、PlayStation、Sharp Zaurus、Windows CE、Pocket PC 和 Symbian。
6) 解释型语言:编译型语言(如 C 或 C++)源程序从源文件(即 C 或 C++ 语言)转换到二进制代码(即 0 和 1)的过程通过编译器和不同的标记、选项完成,当运行程序的时候,连接器把程序从硬盘复制到内存中并且运行。而 Python 程序不需要编译成二进制代码,直接从源代码运行程序。
在计算机内部,Python 解释器把源代码转换成字节码的中间形式,然后再把它翻译成计算机使用的机器语言并运行。因此,用户不再需要操心如何编译程序、如何确保指定了正确的模块或包文件等细节,所有这一切使得使用 Python 更加简单。同时,由于只需要把 Python 程序拷贝到另外一台计算机上即可工作,这也使得 Python 程序更加易于移植。
7) 面向对象:Python 既支持面向过程的编程也支持面向对象的编程。在面向过程的语言中,程序是由过程或仅仅是可重用代码的函数构建起来的。在面向对象的语言中,程序是由数据和功能组合而成的对象构建起来的。与其他语言(如 C++ 和 Java)相比,Python 以一种非常强大又简单的方式实现面向对象编程。
8) 可扩展性强:如果希望把一段关键代码运行得更快或希望某些算法不公开,可以使用 C 或 C++ 语言编写这部分程序,然后在 Python 程序中调用它们。
9) 可嵌入性强:可以把 Python 嵌入 C/C++ 程序,从而向用户提供脚本功能。
10) 丰富的扩展库:Python 扩展库很庞大,可以帮助处理包括正则表达式、文档生成、单元测试、线程、数据库、网页浏览器、CGI、FTP、电子邮件、XML、XML-RPC、HTML、WAV 文件、密码系统、GUI(图形用户界面)、Tk 以及其他与系统有关的操作。只要安装了 Python,所有这些功能都是可用的,这被称作 Python 的“功能齐全”理念。除了扩展库以外,还有许多其他高质量的库,如 wxPython、Twisted 和 Python 图像库等。

5. 为什么运维用python

基于Python本身的优点:简单,易学,速度快,免费、开源,高层语言,可移植性,解释性,可扩展性,可嵌入性,丰富的库,独特的语法。Python已经成为现在编程的必备语言。作为“胶水语言”它能够把其他语言制作的各种模块轻松联结在一起。
比起C和Java,Python的魅力更为突显,因为完成同一项任务,C语言需要1000行代码,Java只需要100行代码,而Python可能只需要20行就轻松搞定。
相关推荐:《Python入门教程》
Python在系统运维上的优势在于其强大的开发多能力和完整的工业链,它的开发能力远强于各种Shell和Perl,的确通过Shell脚本来实现自动化运维!借助自动化运维来实现大规模集群维护的想法是对的,但由于Shell本身的可编程能力较弱,对很多日常维护中需要的特性支持不够,也没有现成的库可以借鉴,各种功能都需要从头写起,所以说Shell脚本力量不够。
而现Python是更好的选择,Python除了易读易写更兼具面向对象和函数式风格,已经成为IT运维、科学计算、数据处理等领域的主要编译语言。通过系统化的将各种管理工具结合,对各类工具进行二次开发,形成统一的服务器管理系统。
和Python类似的Ruby也很适合编写系统管理软件,但是在相关库和工具上比Python差远了。
让系统易运维管理是一个工程,Python在服务器管理工具上非常丰富:配置管理(Saltstack)、批量执行( Fabric, saltstack)、监控(Zenoss, nagios 插件)、虚拟化管理( Python-libvirt)、进程管理 (Supervisor)、云计算(Openstack)等,大部分系统C库都有Python绑定。
作为一门编程语言,Python几乎可以用在任何领域和场合,自身带有无限可能,担任任何角色。
从国内的豆瓣、搜狐、金山、腾讯、盛大、网易、网络、阿里、淘宝、热酷、薯仔、新浪、到国外的谷歌、NASA、YouTube、Facebook等互联网巨头公司都用Python完成各项任务。
随着云计算技术的发展与成熟,低端运维人员的市场越来越小,甚至是没有市场,因为中小型公司不需要运维,而大公司的门槛高,低端运维没有核心竞争力,会工程开发能力的运维才是大企业喜闻乐见的。
掌握Linux技能是一个运维人员的基本,要胜任大公司以企业及的运维工作光会Linux还远远不够。Linux+Python是运维的最佳搭配。

6. 使用python,在linux上监控远程windows的CPU、硬盘、内存使用率

你需要安装wmic,它实现了linux下能使用wmi,安装以后就可以用了,下面是例子。
import wmi_client_wrapper as wmi
wmic = wmi.WmiClientWrapper(
username="Administrator",
password="password",
host="192.168.1.149",
)
output = wmic.query("SELECT * FROM Win32_Processor")

7. python常用到哪些库

Python作为一个设计优秀的程序语言,现在已广泛应用于各种领域,依靠其强大的第三方类库,Python在各个领域都能发挥巨大的作用。
下面我们就来看一下python中常用到的库:
数值计算库:
1. NumPy
支持多维数组与矩阵运算,也针对数组运算提供大量的数学函数库。通常与SciPy和Matplotlib一起使用,支持比Python更多种类的数值类型,其中定义的最重要的对象是称为ndarray的n维数组类型,用于描述相同类型的元素集合,可以使用基于0的索引访问集合中元素。
2. SciPy
在NumPy库的基础上增加了众多的数学、科学及工程计算中常用的库函数,如线性代数、常微分方程数值求解、信号处理、图像处理、稀疏矩阵等,可进行插值处理、信号滤波,以及使用C语言加速计算。
3. Pandas
基于NumPy的一种工具,为解决数据分析任务而生。纳入大量库和一些标准的数据模型,提供高效地操作大型数据集所需的工具及大量的能快速便捷处理数据的函数和方法,为时间序列分析提供很好的支持,提供多种数据结构,如Series、Time-Series、DataFrame和Panel。
数据可视化库:
4. Matplotlib
第一个Python可视化库,有许多别的程序库都是建立在其基础上或者直接调用该库,可以很方便地得到数据的大致信息,功能非常强大,但也非常复杂。
5. Seaborn
利用了Matplotlib,用简洁的代码来制作好看的图表。与Matplotlib最大的区别为默认绘图风格和色彩搭配都具有现代美感。
6. ggplot
基于R的一个作图库ggplot2,同时利用了源于《图像语法》(The Grammar of Graphics)中的概念,允许叠加不同的图层来完成一幅图,并不适用于制作非常个性化的图像,为操作的简洁度而牺牲了图像的复杂度。
7. Bokeh
跟ggplot一样,Bokeh也基于《图形语法》的概念。与ggplot不同之处为它完全基于Python而不是从R处引用。长处在于能用于制作可交互、可直接用于网络的图表。图表可以输出为JSON对象、HTML文档或者可交互的网络应用。
8. Plotly
可以通过Python notebook使用,与Bokeh一样致力于交互图表的制作,但提供在别的库中几乎没有的几种图表类型,如等值线图、树形图和三维图表。
9. pygal
与Bokeh和Plotly一样,提供可直接嵌入网络浏览器的可交互图像。与其他两者的主要区别在于可将图表输出为SVG格式,所有的图表都被封装成方法,且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。
10. geoplotlib
用于制作地图和地理相关数据的工具箱。可用来制作多种地图,比如等值区域图、热度图、点密度图。必须安装Pyglet(一个面向对象编程接口)方可使用。
11. missingno
用图像的方式快速评估数据缺失的情况,可根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图对数据进行修正。
web开发库:
12. Django
一个高级的Python Web框架,支持快速开发,提供从模板引擎到ORM所需的一切东西,使用该库构建App时,必须遵循Django的方式。
13. Socket
一个套接字通讯底层库,用于在服务器和客户端间建立TCP或UDP连接,通过连接发送请求与响应。
14. Flask
一个基于Werkzeug、Jinja 2的Python轻量级框架(microframework),默认配备Jinja模板引擎,也包含其他模板引擎或ORM供选择,适合用来编写API服务(RESTful rervices)。
15. Twisted
一个使用Python实现的基于事件驱动的网络引擎框架,建立在deferred object之上,一个通过异步架构实现的高性能的引擎,不适用于编写常规的Web Apps,更适用于底层网络。
数据库管理:

16. MySQL-python
又称MySQLdb,是Python连接MySQL最流行的一个驱动,很多框架也基于此库进行开发。只支持Python 2.x,且安装时有许多前置条件。由于该库基于C语言开发,在Windows平台上的安装非常不友好,经常出现失败的情况,现在基本不推荐使用,取代品为衍生版本。
17. mysqlclient
完全兼容MySQLdb,同时支持Python 3.x,是Django ORM的依赖工具,可使用原生SQL来操作数据库,安装方式与MySQLdb一致。
18. PyMySQL
纯Python实现的驱动,速度比MySQLdb慢,最大的特点为安装方式简洁,同时也兼容MySQL-python。
19. SQLAlchemy
一种既支持原生SQL,又支持ORM的工具。ORM是Python对象与数据库关系表的一种映射关系,可有效提高写代码的速度,同时兼容多种数据库系统,如SQLite、MySQL、PostgreSQL,代价为性能上的一些损失。
自动化运维:
20. jumpsever跳板机
一种由Python编写的开源跳板机(堡垒机)系统,实现了跳板机的基本功能,包含认证、授权和审计,集成了Ansible、批量命令等。
支持WebTerminal Bootstrap编写,界面美观,自动收集硬件信息,支持录像回放、命令搜索、实时监控、批量上传下载等功能,基于SSH协议进行管理,客户端无须安装agent。主要用于解决可视化安全管理,因完全开源,容易再次开发。
21. Mage分布式监控系统
一种用Python开发的自动化监控系统,可监控常用系统服务、应用、网络设备,可在一台主机上监控多个不同服务,不同服务的监控间隔可以不同,同一个服务在不同主机上的监控间隔、报警阈值可以不同,并提供数据可视化界面。
22. Mage的CMDB
一种用Python开发的硬件管理系统,包含采集硬件数据、API、页面管理3部分功能,主要用于自动化管理笔记本、路由器等常见设备的日常使用。由服务器的客户端采集硬件数据,将硬件信息发送至API,API负责将获取的数据保存至数据库中,后台管理程序负责对服务器信息进行配置和展示。
23. 任务调度系统
一种由Python开发的任务调度系统,主要用于自动化地将一个服务进程分布到其他多个机器的多个进程中,一个服务进程可作为调度者依靠网络通信完成这一工作。
24. Python运维流程系统
一种使用Python语言编写的调度和监控工作流的平台,内部用于创建、监控和调整数据管道。允许工作流开发人员轻松创建、维护和周期性地调度运行工作流,包括了如数据存储、增长分析、Email发送、A/B测试等诸多跨多部门的用例。
GUI编程:
25. Tkinter
一个Python的标准GUI库,可以快速地创建GUI应用程序,可以在大多数的UNIX平台下使用,同样可以应用在Windows和Macintosh系统中,Tkinter 8.0的后续版本可以实现本地窗口风格,并良好地运行在绝大多数平台中。
26. wxPython
一款开源软件跨平台GUI库wxWidgets的Python封装和Python模块,是Python语言的一套优秀的GUI图形库,允许程序员很方便地创建完整的、功能健全的GUI用户界面。
27. PyQt
一个创建GUI应用程序的工具库,是Python编程语言和Qt的成功融合,可以运行在所有主要操作系统上,包括UNIX、Windows和Mac。PyQt采用双许可证,开发人员可以选择GPL和商业许可,从PyQt的版本4开始,GPL许可证可用于所有支持的平台。
28. PySide
一个跨平台的应用程式框架Qt的Python绑定版本,提供与PyQt类似的功能,并相容API,但与PyQt不同处为其使用LGPL授权。
更多Python知识请关注Python自学网。

热点内容
磁罗经算法 发布:2024-11-07 14:26:49 浏览:850
怎么使用主机搭建服务器 发布:2024-11-07 14:10:26 浏览:84
蚂蚁矿机什么配置 发布:2024-11-07 14:10:22 浏览:430
上海家谱数据库 发布:2024-11-07 14:10:19 浏览:296
ibm服务器如何修复系统 发布:2024-11-07 13:56:02 浏览:977
pythonarraylist 发布:2024-11-07 13:52:03 浏览:742
不记名杉德卡密码在哪里 发布:2024-11-07 13:43:44 浏览:533
剑击脚本 发布:2024-11-07 13:39:12 浏览:205
python强转 发布:2024-11-07 13:32:35 浏览:1001
方块方舟如何架设服务器 发布:2024-11-07 13:08:37 浏览:367