python的随机数
A. python如何生成随机数、随机字符、随机字符串
import random
import string
# 返回给定数量的随机数列表
lst = random.sample(source, n)
参数source:从source中随机选择,n为数量
下面字符串可供选择
问题简单了
【生成n个随机数】
numlst = [int(i) for i in random.sample(string.digits, n)]
numlst为随机数整形列表
【生成n个随机字符】
strlst = [i for i in random.sample(string.ascii_letters, n)]
返回一个随机字符列表strlst。
strlst = [i for i in random.sample(string.ascii_letters, n)]
把随机字符连接起来就可以了
print(''.join(strlst))
如果需要生成的随机字符、字符串带有符号,则使用string.printable作为参数source传递给random.sample(source, n)中即可。
望采纳!
B. 用python生成随机数的几种方法
1 从给定参数的正态分布中生成随机数
当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了。这里调用了Numpy模块中的random.normal函数,由于逻辑非参简单,所有直接贴上代码如下:
import numpy as np# 定义从正态分布中获取随机数的函数def get_normal_random_number(loc, scale): """ :param loc: 正态分布的均值 :param scale: 正态分布的标准差 :return:从正态分布中产生的随机数 """ # 正态分布中的随机数生成 number = np.random.normal(loc=loc, scale=scale) # 返回值 return number# 主模块if __name__ == "__main__": # 函数调用 n = get_normal_random_number(loc=2, scale=2) # 打印结果 print(n) # 结果:3.275192443463058
2 从给定参数的均匀分布中获取随机数的函数
考虑从均匀分布中获取随机数的时候,要事先知道均匀分布的下界和上界,然后调用Numpy模块的random.uniform函数生成随机数。
import numpy as np# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 主模块if __name__ == "__main__": # 函数调用 n = get_uniform_random_number(low=2, high=4) # 打印结果 print(n) # 结果:2.4462417140153114
3 按照指定概率生成随机数
有时候我们需要按照指定的概率生成随机数,比如已知盒子中每种颜色的球的比例,猜测下一次取出的球的颜色。在这里介绍的问题和上面的例子相似,要求给定一个概率列表,从列表对应的数字列表或区间列表中生成随机数,分两部分讨论。
3.1 按照指定概率从数字列表中随机抽取数字
假设给定一个数字列表和一个与之对应的概率列表,两个列表对应位置的元素组成的元组即表示该数字在数字列表中以多大的概率出现,那么如何根据这些已知条件从数字列表中按概率抽取随机数呢?在这里我们考虑用均匀分布来模拟概率,代码如下:
import numpy as npimport random# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数def get_number_by_pro(number_list, pro_list): """ :param number_list:数字列表 :param pro_list:数字对应的概率列表 :return:按概率从数字列表中抽取的数字 """ # 用均匀分布中的样本值来模拟概率 x = random.uniform(0, 1) # 累积概率 cum_pro = 0.0 # 将可迭代对象打包成元组列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x < cum_pro: # 返回值 return number# 主模块if __name__ == "__main__": # 数字列表 num_list = [1, 2, 3, 4, 5] # 对应的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函数调用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印结果 print(n) # 结果:1
3.2 按照指定概率从区间列表中的某个区间内生成随机数
给定一个区间列表和一个与之对应的概率列表,两个列表相应位置的元素组成的元组即表示某数字出现在某区间内的概率是多少,已知这些,我们如何生成随机数呢?这里我们通过两次使用均匀分布达到目的,代码如下:
import numpy as npimport random# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数def get_number_by_pro(number_list, pro_list): """ :param number_list:数字列表 :param pro_list:数字对应的概率列表 :return:按概率从数字列表中抽取的数字 """ # 用均匀分布中的样本值来模拟概率 x = random.uniform(0, 1) # 累积概率 cum_pro = 0.0 # 将可迭代对象打包成元组列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x < cum_pro: # 从区间[number. number - 1]上随机抽取一个值 num = get_uniform_random_number(number, number - 1) # 返回值 return num# 主模块if __name__ == "__main__": # 数字列表 num_list = [1, 2, 3, 4, 5] # 对应的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函数调用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印结果 print(n) # 结果:3.49683787011193
C. 如何用python生成随机的15行6列的随机数据
用python生成随机的15行6列的随机数据的方法如下:
1.import numpy as np # 定义从正态分布中获取随机数的函数 def get_normal_random_number(loc, scale): """ :param loc: 正态分布的均值 :param scale: 正态分布的标准差 :return:从正态分布中产生的随机数 """ # 正态分布中的随机数生成 number = np.random.normal(loc=loc, scale=scale) # 返回值 return number # 主模块 if __name__ == "__main__": # 函数调用 n = get_normal_random_number(loc=2, scale=2) # 打印结果 print(n) # 结果:3.275192443463058
2 从给定参数的均匀分布中获取随机数的函数
考虑从均匀分布中获取随机数的时候,要事先知道均匀分布的下界和上界,然后调用Numpy模块的random.uniform函数生成随机数。
import numpy as np # 定义从均匀分布中获取随机数的函数 def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number # 主模块 if __name__ == "__main__": # 函数调用 n = get_uniform_random_number(low=2, high=4) # 打印结果 print(n) # 结果:2.4462417140153114
3 按照指定概率生成随机数
有时候我们需要按照指定的概率生成随机数,比如已知盒子中每种颜色的球的比例,猜测下一次取出的球的颜色。在这里介绍的问题和上面的例子相似,要求给定一个概率列表,从列表对应的数字列表或区间列表中生成随机数,分两部分讨论。
D. randint在python中的意思
python中的randint用来生成随机数,在使用randint之前,需要调用random库。其表达是为random.randint(x,y),参数x和y代表生成随机数的区间范围。
random() 函数命名来源于英文单词random(随机)。randint是random + integer拼接简写而成,代表随机一个整数。
Python标准库中的random函数,可以生成随机浮点数、整数、字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据等。
函数randint的使用
1、OUT = RANDINT
产生一个“ 0 ”或“ 1 ”等概率。
2、OUT = RANDINT(M)
生成的M 矩阵的随机二进制数字,“ 0 ”和“ 1 ”出现的概率均等。
3、OUT = RANDINT(M,N)
生成的(M,N) 矩阵的随机二进制数字,“ 0 ”和“ 1 ”出现的概率均等。
4、OUT = RANDINT(M,N,RANGE)
生成的(M,N) 矩阵的随机二进制数字,RANGE范围可以是标量或向量。
标量:为正的话,取值为[0,RANGE-1] ,为负的话,取值为 [RANGE+1, 0]。
向量:取值为[RANGE(1), RANGE(2)]。
5、OUT = RANDINT(M,N,RANGE,STATE)
resets the state of RAND to STATE。
E. python中random什么意思
Random意思是返回一个0~num-1之间的随机数。random(num)是在stdlib.h中的一个宏定义。num和函数返回值都是整型数。
如需要在一个random()序列上生成真正意义的随机数,在执行其子序列时使用randomSeed()函数预设一个绝对的随机输入,例如在一个断开引脚上的analogRead()函数的返回值。
Random的作用
Random使用之前需要使用Randomize语句进行随机数种子的初始化。RANDOM产生的是伪随机数或者说是用一种复杂的方法计算得到的序列值,因此每次运算时需要一个不同的种子值。种子值不同,得到的序列值也不同。因此也就是真正的随机数了。
RANDOM产生的是伪随机数或者说是用一种复杂的方法计算得到的序列值,因此每次运算时需要一个不同的种子值。种子值不同,得到的序列值也不同。因此也就是真正的随机数了。这也正是RANDOMIZE随机初始化的作用。 VB里用 NEW RANDOM()来表示初始化。
F. python中的随机数是怎么实现的
PYTHON中的伪随机数发生器用的是梅森旋转算法。
梅森旋转算法(Mersenne twister)是一个伪随机数发生算法。由松本真和西村拓士在1997年开发,基于有限二进制字段上的矩阵线性递归。可以快速产生高质量的伪随机数,修正了古典随机数发生算法的很多缺陷。
梅森旋转算法是R、Python、Ruby、IDL、Free Pascal、PHP、Maple、Matlab、GNU多重精度运算库和GSL的默认伪随机数产生器。从C++11开始,C++也可以使用这种算法。
整个算法主要分为三个阶段:获得基础的梅森旋转链;对于旋转链进行旋转算法;对于旋转算法所得的结果进行处理。
算法实现的过程中,参数的选取取决于梅森素数,故此得名。
梅森素数由梅森数而来。所谓梅森数,是指形如2↑p-1的一类数,其中指数p是素数,常记为Mp 。如果梅森数是素数,就称为梅森素数。
例如4-1=3,8-1=7,16-1=15(不是素数),32-1=31,64-1=63(不是素数)等等。
G. python基础2:随机数生成—random模块、numpy中的random函数
在Python中可以用于随机数生成的有两种主要途径,一是random模块,另一个是numpy库中random函数。
在我们日常使用中,如果是为了得到随机的单个数,多考虑random模块;如果是为了得到随机小数或者整数的矩阵,就多考虑numpy中的random函数,当然numpy也可以的到随机的单个数
一、random模块
二、numpy库中random函数
random模块中将近有7个函数都是可以用来生成随机数的:
作用:随机生成一个 [0,1) 的浮点数
作用:随机生成一个 [a,b) 的浮点数
作用:随机生成一个 [a,b] 的整数
作用:从列表,元组,字符串、集合(可用于for循环的数据类型)中随机选择一个元素
作用:在生成的<以a为始,每step递增,以b为终>这样的一个整数序列中随机选择一个数
作用:打乱一个列表的元素顺序
从序列population中随机取出k个数;population的类型可以是列表、元组、集合、字符串;
在Numpy库中,常用使用np.random.rand()、np.random.randn()和np.random.randint()随机函数。
作用:返回一个或一组服从标准正态分布的随机样本值
备注:标准正态分布是以0为均数、以1为标准差的正态分布,记为N(0,1)。对应的正态分布曲线如下所示,即
作用:使用方法与np.random.randn()函数相同 ,通过本函数可以返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1),不包括1
numpy.random.randint(low, high=None, size=None, dtype='l')
输入:
low—–为最小值
high—-为最大值
size—–为数组维度大小
dtype—为数据类型,默认的数据类型是np.int。
作用: 返回随机整数或整型数组,范围区间为[low,high),包含low,不包含high; high没有填写时,默认生成随机数的范围是[0,low
np.random.random([size])
作用:生成[0,1)之间的浮点数,与np.random.rand()功能类似
np.random.choice(a,[ size, replace, p])
参考文档1: 【python】numpy之random库简单的随机数据生成.rand()、.randint()、.randn()、.random()等(一)
参考文档2: Python中随机数的生成
参考文档3: numpy.random模块常用函数
终于写完了,我以为它很简单的………………预计1小时,结果写了2.5小时
H. 怎么用python生成随机数
在Python中,random模块用于生成随机数。下面介绍下random模块中常用的几个函数
- 01
打开我们python的ide
- 02
在打开的shell中,首先需要导入random库,才可以使用random中的方法,首先介绍下应用最多的函数,random.random(),可以生成一个0到1的随机符点数
- 03
random.uniform(a,b)函数,生成指定范围内的随机符点数,如下图
- 04
random.randint(a,b)函数,生成一个指定范围内的整数,如下图
- 05
random.choice(sqe)函数,从sqe序列中得到一个随机元素,如下图,序列元素可以包含很多种类,集合,列表,甚至元组都可以作为参数进行传递