当前位置:首页 » 编程语言 » pythonnannone

pythonnannone

发布时间: 2023-02-27 21:16:39

python中利用pandas怎么处理缺省值

null/None/NaN
null经常出现在数据库
None是Python中的缺失值,类型是NoneType
NaN也是python中的缺失值,意思是不是一个数字,类型是float
在pandas和Numpy中会将None替换为NaN,而导入数据库中的时候则需要把NaN替换成None
找出空值
isnull()
notnull()
添加空值
numeric容器会把None转换为NaN
In [20]: s = pd.Series([1, 2, 3])

In [21]: s.loc[0] = None

In [22]: s
Out[22]:
0 NaN
1 2.0
2 3.0
dtype: float641234567891012345678910

object容器会储存None
In [23]: s = pd.Series(["a", "b", "c"])

In [24]: s.loc[0] = None

In [25]: s.loc[1] = np.nan

In [26]: s
Out[26]:
0 None
1 NaN
2 c
dtype:

空值计算
arithmetic operations(数学计算)
NaN运算的结果是NaN
statistics and computational methods(统计计算)
NaN会被当成空置
GroupBy
在分组中会忽略空值
清洗空值
填充空值
fillna
DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
参数
value : scalar, dict, Series, or DataFrame
method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None(bfill使用后面的值填充,ffill相反)
axis : {0 or ‘index’, 1 or ‘columns’}
inplace : boolean, default False
limit : int, default None
downcast : dict, default is None
返回值
filled : DataFrame
Interpolation
replace
删除空值行或列
DataFrame.dropna(axis=0, how=’any’, thresh=None, subset=None, inplace=False)
参数
axis : {0 or ‘index’, 1 or ‘columns’}, or tuple/list thereof
how : {‘any’, ‘all’}
thresh : int, default None
subset : array-like
inplace : boolean, default False
返回
dropped : DataFrame

② 数据库中的空值与NULL的区别以及python中的NaN和None

数据库中空字符和null的区别在于:
在做count计算的时候,空字符也会被计算在里面,而null不会。有些同学在使用where
is
null
和is
not
null
的时候也要注意数据库中的“空值”是空字符还是null。不然统计结果可能并不是你想要的。
python有两种方式获取数据:
1.
一种是把数据从mysql
中导出到txt或者csv,然后本地读取;
2.
另一种是python直接链接数据库,读取数据;
第一种把数据从mysql导出后,python读取时,空值即为null;
第二种链接数据库后,python能读取表结构,数据库的null对应列表中的none以及pandas中的nan(如果字段类型是时间,则为nat)。而数据库中的空字符,则被识别为空字符。
望采纳!

③ 数据库中的空值与NULL的区别以及python中的NaN和None

  • NULL表示:不可用、未赋值、不知道、不适用,它既不是0也不是空格。记住:一个数值与NULL进行四则运算,其结果是NULL

  • 空值和NULL的区别在于,在做count计算的时候:count(field_name),field_name的值为空值也会被计算在里面(这一行统计有效),而NULL不会

  • python有两种方式获取数据:
    1. 一种是把数据从MySQL中导出到txt或者csv,然后本地读取;
    2. 另一种是python直接链接数据库,读取数据;

  • 第一种把数据从MYSQL导出后,python读取时,空值和NULL在文件中都为NULL;Python读取之后为NaN

  • 第二种链接数据库后,python能读取表结构,数据库的NULL对应列表中的None以及pandas中的NaN(如果字段类型是时间,则为NaT)。而数据库中的空字符,则被识别为空字符。

④ 数据库中的空值与NULL的区别以及python中的NaN和None

null表示:不可用、未赋值、不知道、不适用,它既不是0也不是空格。记住:一个数值与null进行四则运算,其结果是null
空值和null的区别在于,在做count计算的时候:count(field_name),field_name的值为空值也会被计算在里面(这一行统计有效),而null不会
python有两种方式获取数据:
1.
一种是把数据从mysql
中导出到txt或者csv,然后本地读取;
2.
另一种是python直接链接数据库,读取数据;
第一种把数据从mysql导出后,python读取时,空值和null在文件中都为null;python读取之后为nan
第二种链接数据库后,python能读取表结构,数据库的null对应列表中的none以及pandas中的nan(如果字段类型是时间,则为nat)。而数据库中的空字符,则被识别为空字符。

⑤ python数据处理怎么筛选掉nan空值

既然我们认为空值和空格都代表无数据,那么可以先得到这两种情况下的布尔数组。
这里,我们的DataFrame类型的数据集为df,其中有一个变量VIN,那么取得空值和空格的布尔数组为NONE_VIN。然后通过该布尔数组,就能得到我们要的数据了
NONE_VIN = (df["VIN"].isnull()) | (df["VIN"].apply(lambda x: str(x).isspace()))
df_null = df[NONE_VIN]
df_not_null = df[~NONE_VIN]

⑥ Python pandas用法

在Python中,pandas是基于NumPy数组构建的,使数据预处理、清洗、分析工作变得更快更简单。pandas是专门为处理表格和混杂数据设计的,而NumPy更适合处理统一的数值数组数据。
使用下面格式约定,引入pandas包:

pandas有两个主要数据结构:Series和DataFrame。

Series是一种类似于一维数组的对象,它由 一组数据 (各种NumPy数据类型)以及一组与之相关的 数据标签(即索引) 组成,即index和values两部分,可以通过索引的方式选取Series中的单个或一组值。

pd.Series(list,index=[ ]) ,第二个参数是Series中数据的索引,可以省略。

Series类型索引、切片、运算的操作类似于ndarray,同样的类似Python字典类型的操作,包括保留字in操作、使用.get()方法。
Series和ndarray之间的主要区别在于Series之间的操作会根据索引自动对齐数据。

DataFrame是一个表格型的数据类型,每列值类型可以不同,是最常用的pandas对象。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。

pd.DataFrame(data,columns = [ ],index = [ ]) :columns和index为指定的列、行索引,并按照顺序排列。

如果创建时指定了columns和index索引,则按照索引顺序排列,并且如果传入的列在数据中找不到,就会在结果中产生缺失值:

数据索引 :Series和DataFrame的索引是Index类型,Index对象是不可修改,可通过索引值或索引标签获取目标数据,也可通过索引使序列或数据框的计算、操作实现自动化对齐。索引类型index的常用方法:

重新索引 :能够改变、重排Series和DataFrame索引,会创建一个新对象,如果某个索引值当前不存在,就引入缺失值。
df.reindex(index, columns ,fill_value, method, limit, ) :index/columns为新的行列自定义索引;fill_value为用于填充缺失位置的值;method为填充方法,ffill当前值向前填充,bfill向后填充;limit为最大填充量; 默认True,生成新的对象,False时,新旧相等不复制。

删除指定索引 :默认返回的是一个新对象。
.drop() :能够删除Series和DataFrame指定行或列索引。
删除一行或者一列时,用单引号指定索引,删除多行时用列表指定索引。
如果删除的是列索引,需要增加axis=1或axis='columns'作为参数。
增加inplace=True作为参数,可以就地修改对象,不会返回新的对象。

在pandas中,有多个方法可以选取和重新组合数据。对于DataFrame,表5-4进行了总结

适用于Series和DataFrame的基本统计分析函数 :传入axis='columns'或axis=1将会按行进行运算。
.describe() :针对各列的多个统计汇总,用统计学指标快速描述数据的概要。
.sum() :计算各列数据的和
.count() :非NaN值的数量
.mean( )/.median() :计算数据的算术平均值、算术中位数
.var()/.std() :计算数据的方差、标准差
.corr()/.cov() :计算相关系数矩阵、协方差矩阵,是通过参数对计算出来的。Series的corr方法用于计算两个Series中重叠的、非NA的、按索引对齐的值的相关系数。DataFrame的corr和cov方法将以DataFrame的形式分别返回完整的相关系数或协方差矩阵。
.corrwith() :利用DataFrame的corrwith方法,可以计算其列或行跟另一个Series或DataFrame之间的相关系数。传入一个Series将会返回一个相关系数值Series(针对各列进行计算),传入一个DataFrame则会计算按列名配对的相关系数。
.min()/.max() :计算数据的最小值、最大值
.diff() :计算一阶差分,对时间序列很有效
.mode() :计算众数,返回频数最高的那(几)个
.mean() :计算均值
.quantile() :计算分位数(0到1)
.isin() :用于判断矢量化集合的成员资格,可用于过滤Series中或DataFrame列中数据的子集
适用于Series的基本统计分析函数,DataFrame[列名]返回的是一个Series类型。
.unique() :返回一个Series中的唯一值组成的数组。
.value_counts() :计算一个Series中各值出现的频率。
.argmin()/.argmax() :计算数据最大值、最小值所在位置的索引位置(自动索引)
.idxmin()/.idxmax() :计算数据最大值、最小值所在位置的索引(自定义索引)

pandas提供了一些用于将表格型数据读取为DataFrame对象的函数。下表对它们进行了总结,其中read_csv()、read_table()、to_csv()是用得最多的。

在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载、清理、转换以及重塑。

在许多数据分析工作中,缺失数据是经常发生的。对于数值数据,pandas使用浮点值NaN(np.nan)表示缺失数据,也可将缺失值表示为NA(Python内置的None值)。

替换值
.replace(old, new) :用新的数据替换老的数据,如果希望一次性替换多个值,old和new可以是列表。默认会返回一个新的对象,传入inplace=True可以对现有对象进行就地修改。

删除重复数据

利用函数或字典进行数据转换

df.head():查询数据的前五行
df.tail():查询数据的末尾5行
pandas.cut()
pandas.qcut() 基于分位数的离散化函数。基于秩或基于样本分位数将变量离散化为等大小桶。
pandas.date_range() 返回一个时间索引
df.apply() 沿相应轴应用函数
Series.value_counts() 返回不同数据的计数值
df.aggregate()
df.reset_index() 重新设置index,参数drop = True时会丢弃原来的索引,设置新的从0开始的索引。常与groupby()一起用
numpy.zeros()

⑦ 在使用python中的concat 函数时,有一个数据显示nan 是怎么回事

说明你的样本数据中有nan值,通常是因为原始数据中包含空字符串或None值引起的。
解决办法是把样本数据中包含nan值的数据剔除,
或者如果样本数据都是数值的话可以把nan值都改成0。

⑧ 数据库中的空值与NULL的区别以及python中的NaN和None

NULL表示:不可用、未赋值、不知道、不适用,它既不是0也不是空格。记住:一个数值与NULL进行四则运算,其结果是NULL
空值和NULL的区别在于,在做count计算的时候:count(field_name),field_name的值为空值也会被计算在里面(这一行统计有效),而NULL不会
python有两种方式获取数据:
1.
一种是把数据从MySQL
中导出到txt或者csv,然后本地读取;
2.
另一种是python直接链接数据库,读取数据;
第一种把数据从MYSQL导出后,python读取时,空值和NULL在文件中都为NULL;Python读取之后为NaN
第二种链接数据库后,python能读取表结构,数据库的NULL对应列表中的None以及pandas中的NaN(如果字段类型是时间,则为NaT)。而数据库中的空字符,则被识别为空字符。

热点内容
代号治愈如何创建服务器 发布:2024-11-07 16:50:25 浏览:45
dos强制删除文件夹 发布:2024-11-07 16:41:05 浏览:294
java协程框架 发布:2024-11-07 16:30:55 浏览:380
预测拟合算法 发布:2024-11-07 16:30:45 浏览:663
橙光原始密码是多少 发布:2024-11-07 16:24:33 浏览:34
安卓电话密码是什么 发布:2024-11-07 16:14:44 浏览:317
战网客户端文件夹 发布:2024-11-07 16:02:42 浏览:123
我的世界服务器转账点券的指令 发布:2024-11-07 15:57:34 浏览:268
马桶解压 发布:2024-11-07 15:57:32 浏览:890
手机游戏苹果和安卓哪个好 发布:2024-11-07 15:55:36 浏览:701