python习题集
❶ 新手学python用什么书
于我个人而言,我很喜欢Python,当然我也有很多的理由推荐你去学python.我只说两点.一是简单,二是写python薪资高.我觉得这俩理由就够了,对不对.买本书,装上pycharm,把书上面的例子习题都敲一遍.再用flask,web.py等框架搭个小网站..完美...(小伙伴们有问到该学python2.7还是3.X,那我的答案是:目前大多数实际开发,都是用2.7的,因为实际项目开发有很多依赖的包,都只支持到2.7,你用3.X干不了活.那你能怎么办.所以不需要纠结.等3.X普及,你写的2.7代码,都可以无痛移植,妥妥的不用担心.)
推荐课程:Python教程。
第一个,个人认为《Python学习手册:第3版》是学习语言基础比较好的书了.
《Python学习手册(第3版)》讲述了:Python可移植、功能强大、易于使用,是编写独立应用程序和脚本应用程序的理想选择。无论你是刚接触编程或者刚接触Python,通过学习《Python学习手册(第3版)》,你可以迅速高效地精通核心Python语言基础。读完《Python学习手册(第3版)》,你会对这门语言有足够的了解,从而可以在你所从事的任何应用领域中使用它。
《Python学习手册(第3版)》是作者根据过去10年用于教学而广为人知的培训课程的材料编写而成的。除了有许多详实说明和每章小结之外,每章还包括一个头脑风暴:这是《Python学习手册(第3版)》独特的一部分,配合以实用的练习题和复习题,让读者练习新学的技巧并测试自己的理解程度。
《Python学习手册(第3版)》包括:
类型和操作——深入讨论Python主要的内置对象类型:数字、列表和字典等。
语句和语法——在Python中输入代码来建立并处理对象,以及Python一般的语法模型。
函数——Python基本的面向过程工具,用于组织代码和重用。
模块——封装语句、函数以及其他工具,从而可以组织成较大的组件。
类和OOP——Python可选的面向对象编程工具,可用于组织程序代码从而实现定制和重用。
异常和工具——异常处理模型和语句,并介绍编写更大程序的开发工具。
讨论Python3.0。
《Python学习手册(第3版)》让你对Python语言有深入而完整的了解,从而帮助你理解今后遇到的任何Python应用程序实例。如果你准备探索Google和YouTube为什么选中了Python,《Python学习手册(第3版)》就是你入门的最佳指南。
第二个,《Python基础教程(第2版·修订版)》
也是经典的Python入门教程,层次鲜明,结构严谨,内容翔实,特别是最后几章,作者将前面讲述的内容应用到10个引人入胜的项目中,并以模板的形式介绍了项目的开发过程,手把手教授Python开发,让读者从项目中领略Python的真正魅力。这本书既适合初学者夯实基础,又能帮助Python程序员提升技能,即使是Python方面的技术专家,也能从书里找到耳目一新的内容。
第三个《“笨办法”学Python(第3版)》
是一本Python入门书籍,适合对计算机了解不多,没有学过编程,但对编程感兴趣的初学者使用。这本书结构非常简单,其中覆盖了输入/输出、变量和函数三个主题,以及一些比较高级的话题,如条件判断、循环、类和对象、代码测试及项目的实现等。每一章的格式基本相同,以代码习题开始,按照说明编写代码,运行并检查结果,然后再做附加练习。这本书以习题的方式引导读者一步一步学习编程,从简单的打印一直讲授到完整项目的实现,让初学者从基础的编程技术入手,最终体验到软件开发的基本过程。
【大牛评价】hardway(笨办法)比较适合起步编程,作为Python的入门挺不错。
第四个,在这里给大家推荐最后一本《集体智慧编程》
本书以机器学习与计算统计为主题背景,专门讲述如何挖掘和分析Web上的数据和资源,如何分析用户体验、市场营销、个人品味等诸多信息,并得出有用的结论,通过复杂的算法来从Web网站获取、收集并分析用户的数据和反馈信息,以便创造新的用户价值和商业价值。
全书内容翔实,包括协作过滤技术(实现关联产品推荐功能)、集群数据分析(在大规模数据集中发掘相似的数据子集)、搜索引擎核心技术(爬虫、索引、查询引擎、PageRank算法等)、搜索海量信息并进行分析统计得出结论的优化算法、贝叶斯过滤技术(垃圾邮件过滤、文本过滤)、用决策树技术实现预测和决策建模功能、社交网络的信息匹配技术、机器学习和人工智能应用等。
本书是Web开发者、架构师、应用工程师等的绝佳选择。
“太棒了!对于初学这些算法的开发者而言,我想不出有比这本书更好的选择了,而对于像我这样学过Al的老朽而言,我也想不出还有什么更好的办法能够让自己重温这些知识的细节。”
——DanRussell,资深技术经理,Google
“Toby的这本书非常成功地将机器学习算法这一复杂的议题拆分成了一个个既实用又易懂的例子,我们可以直接利用这些例子来分析当前网络上的社会化交互作用。假如我早两年读过这本书,就会省去许多宝贵的时间,也不至于走那么多的弯路了。”
——TimWolters,CTO,CollectiveIntellect
❷ Python 从入门到精通推荐看哪些书籍呢
你好呀,题主!Python从入门到精通的书籍推荐有下面这几本书哦~
希望可以帮助到你!
❸ Python视频教程,百度云
学客巴巴,,自己去找,几千套啥都有
❹ Python中基础练习题
法一:利用set()函数的去重功能,去重后再使用list()函数将集合转换为我们想要的列表
list1 = [11,22,33]
list2 = [22,33,44]
list3 = list(set(list1 + list2))
list3.sort()
print(list3)
-------------
法二:利用if和for,先遍历list1所有元素追加到list3中,然后遍历list2,条件判断list2中当前元素是否在list3中,如果不在则追加到list3中
list1 = [11,22,33]
list2 = [22,33,44]
list3 = []
for ele1 in list1:
list3.append(ele1)
for ele2 in list2:
if ele2 not in list3:
list3.append(ele2)
print(list3)
❺ Python 有哪些入门学习方法和值得推荐的经典教材
如果你有一定的计算机编程知识基础,那么很容易学;再如果你对编程十分感兴趣,那么很容易学的。
1,找到合适的入门书籍,大致读一次,循环啊判断啊,常用类啊,搞懂(太难的跳过)
2,做些简单习题,字符串比较,读取日期之类PythonCookbook不错(太难太无趣的,再次跳过,保持兴趣是最重要的,不会的以后可以再学)
3,加入Python讨论群,态度友好笑眯眯(很重要,这样高手才会耐心纠正你错误常识)。很多小问题,纠结许久,对方一句话点播思路,真的节约你很多时间。耐心指教我的好人,超级超级多谢。
4,解决自己电脑问题。比如下载美剧,零散下载了2,4,5,8集,而美剧共12集,怎样找出漏下的那几集?然后问题分解,1读取全部下载文件名,2提取集的数字,3数字排序和(1--12)对比,找出漏下的。
5,时刻记住目的,不是为了当程序员,是为了解决问题。比如,想偷懒抓网页内容,用urllib不行,用request也不行,才发现抓取内容涉及那么多方面(cookie,header,SSL,url,javascript等等),当然可以听人家劝,回去好好读书,从头读。或者,不求效率,只求解决,用ie打开网页再另存为行不行?ie已经渲染过全部结果了。问题变成:1--打开指定的10个网页(一行代码就行)。更复杂的想保存呢?利用已经存在的包,比如PAM30(我的是Python3),直接打开ie,用函数outHTML另存为文本,再用搜索函数(str搜索也行,re正则也行)找到数据。简单吧?而且代码超级短。
6,保持兴趣,用最简单的方式解决问题,什么底层驱动,各种交换,留给大牛去写吧。我们利用已经有的包完成。
7,耐心读文档,并且练习快速读文档。拿到新包,找到自己所需要的函数,是需要快速读一次的。这个不难,读函数名,大概能猜到是干嘛的,然后看看返回值,能判断是不是自己需要的。
8,写帮助文件和学习笔记,并发布共享。教别人的时候,其实你已经自己再次思考一次了。我觉得学程序就像学英文,把高频率的词(循环,判断,常用包,常用函数)搞懂,就能拼装成自己想要的软件。一定要保持兴趣,太复杂的跳过,就像小学数学,小学英语,都是由简入深。网络很平面,无数国际大牛着作好书,关于Python,算法,电脑,网络,或者程序员思路,或者商业思维(浪潮之巅是本好书)等等,还有国际名校的网络公开课(中英文字幕翻译完毕,观看不是难事),讲计算机,网络,安全,或者安卓系统,什么都有,只要能持续保持兴趣,一点点学习下去,不是难事。所有天才程序员,都曾是儿童,回到儿童思维来理解和学习。觉得什么有趣,先学,不懂的,先放着,遇到问题再来学,效果更好。唯一建议是,不要太贪心,耐心学好一门优雅的语言,再学其它。虽然Javascript做特效很炫,或提某问题时,有大牛建议,用Ruby来写更好之类,不要改方向。就像老笑话:“要学习递归,必须首先理解递归。”然后死循环一直下去。坚持学好一门语言,再研究其他。即使一门语言,跟网络,数据库等等相关的部分,若都能学好,再学其他语言,是很快的事情。另外就是,用学英文的耐心来学计算机,英文遇到不懂的词,抄下,查询。python里,看到Http,查查定义,看到outHtml,查查定义,跟初学英语时候一样,不要直接猜意思,因为精确描述性定义,跟含糊自然语有区别的。而新人瞎猜,很容易错误理解,wiki,google很有用。
对于python初学者来说,能找到一个好老师学习格外重要,这能决定你是不是可以做出好的项目,在python开发的路上越走越轻松,如果现在的你缺乏学习经验,找不到老师指导你学习,可以加企鹅扣-Q前面112再加上中间的983以及最后四位数4903,连在一起就可以了。
如果说汇编是第一代编程语言,那么C和C++是第二代编程语言,C#和Java等等是第三代编程语言,Python和其他类似的脚本语言就是第四代编程语言(除汇编外这些语言都是C语系下的编程语言,可以进行类比),从C++开始是个分水岭,它是通过面向对象和对底层技术的封装,使编程向高级编程过度,到Python已经是很简历通俗了,至少是跟之前比,所以如果说python不易学,那其他语言怎么办呢,几乎每本python的教材都会先表明python是一门易学易用的语言,这也是这个语言被创造出来的宗旨之一,另外Google的程序猿很喜欢用Python编写各类工具,因为它的语言简历,编码效率高,让用惯了其他语言的人,乐意去用这门新的语言,也说明它的易学性。
另外从广义讲,Python不仅是一门编程语言,还是一个编程的平台,在这个平台下,有着安装各种扩展、框架的工具pip,有着打包工具setuptools等等等等,这些工具已经很成熟,而且易于上手,另外Python有很多很好的编程工具(集成开发环境)可以用,如PyCharm等,这也使的新人很容易上手,不像其他不成熟的编程语言工具贫乏,编写和运行程序如连电路板一般。
❻ python书籍推荐
python书籍推荐有:《Python编程:从入门到实践》《Head-First Python(2nd edition)》《“笨方法”学Python》《Python程序设计(第3版)》《像计算机科学家一样思考Python(第2版)》。
一、《Python编程:从入门到实践》
埃里克·马瑟斯的这本《Python编程:从入门到实践》是一本快速,全面的Python语言入门教程,适合初学者,他们希望学习Python编程并能够编写出有用的程序。本书旨在让读者快速上手编写真正的程序。本书也适用于对语言有模糊理解并希望在尝试Python编程之前了解其知识的程序员。
在学习本书时,将学习使用Numpy和matplotlib等库和工具,并使用数据创建令人惊叹的可视化效果。还将了解2D游戏和Web应用程序背后的思想以及如何创建它们。
❼ Python培训中有哪些优秀的资源
Python学习的资源有不少,优秀的资源就少了。有一本帮助我很大的就是《疯狂Python讲义》,它既有使用IDLE运行Python程序,也有 Python的关键字和内置函数,还有Python的GUI库 。内容很详细,很容易理解,是一本非常好的一个Python学习的资源。强烈推荐!
❽ python数据分析与应用-Python数据分析与应用 PDF 内部全资料版
给大家带来的一篇关于Python数据相关的电子书资源,介绍了关于Python方面的内容,本书是由人民邮电出版社出版,格式为PDF,资源大小281 MB,黄红梅 张良均编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:7.8。
内容介绍
目录
第1章Python数据分析概述1
任务1.1认识数据分析1
1.1.1掌握数据分析的概念2
1.1.2掌握数据分析的流程2
1.1.3了解数据分析应用场景4
任务1.2熟悉Python数据分析的工具5
1.2.1了解数据分析常用工具6
1.2.2了解Python数据分析的优势7
1.2.3了解Python数据分析常用类库7
任务1.3安装Python的Anaconda发行版9
1.3.1了解Python的Anaconda发行版9
1.3.2在Windows系统中安装Anaconda9
1.3.3在Linux系统中安装Anaconda12
任务1.4掌握Jupyter Notebook常用功能14
1.4.1掌握Jupyter Notebook的基本功能14
1.4.2掌握Jupyter Notebook的高 级功能16
小结19
课后习题19
第2章NumPy数值计算基础21
任务2.1掌握NumPy数组对象ndarray21
2.1.1创建数组对象21
2.1.2生成随机数27
2.1.3通过索引访问数组29
2.1.4变换数组的形态31
任务2.2掌握NumPy矩阵与通用函数34
2.2.1创建NumPy矩阵34
2.2.2掌握ufunc函数37
任务2.3利用NumPy进行统计分析41
2.3.1读/写文件41
2.3.2使用函数进行简单的统计分析44
2.3.3任务实现48
小结50
实训50
实训1创建数组并进行运算50
实训2创建一个国际象棋的棋盘50
课后习题51
第3章Matplotlib数据可视化基础52
任务3.1掌握绘图基础语法与常用参数52
3.1.1掌握pyplot基础语法53
3.1.2设置pyplot的动态rc参数56
任务3.2分析特征间的关系59
3.2.1绘制散点图59
3.2.2绘制折线图62
3.2.3任务实现65
任务3.3分析特征内部数据分布与分散状况68
3.3.1绘制直方图68
3.3.2绘制饼图70
3.3.3绘制箱线图71
3.3.4任务实现73
小结77
实训78
实训1分析1996 2015年人口数据特征间的关系78
实训2分析1996 2015年人口数据各个特征的分布与分散状况78
课后习题79
第4章pandas统计分析基础80
任务4.1读/写不同数据源的数据80
4.1.1读/写数据库数据80
4.1.2读/写文本文件83
4.1.3读/写Excel文件87
4.1.4任务实现88
任务4.2掌握DataFrame的常用操作89
4.2.1查看DataFrame的常用属性89
4.2.2查改增删DataFrame数据91
4.2.3描述分析DataFrame数据101
4.2.4任务实现104
任务4.3转换与处理时间序列数据107
4.3.1转换字符串时间为标准时间107
4.3.2提取时间序列数据信息109
4.3.3加减时间数据110
4.3.4任务实现111
任务4.4使用分组聚合进行组内计算113
4.4.1使用groupby方法拆分数据114
4.4.2使用agg方法聚合数据116
4.4.3使用apply方法聚合数据119
4.4.4使用transform方法聚合数据121
4.4.5任务实现121
任务4.5创建透视表与交叉表123
4.5.1使用pivot_table函数创建透视表123
4.5.2使用crosstab函数创建交叉表127
4.5.3任务实现128
小结130
实训130
实训1读取并查看P2P网络贷款数据主表的基本信息130
实训2提取用户信息更新表和登录信息表的时间信息130
实训3使用分组聚合方法进一步分析用户信息更新表和登录信息表131
实训4对用户信息更新表和登录信息表进行长宽表转换131
课后习题131
第5章使用pandas进行数据预处理133
任务5.1合并数据133
5.1.1堆叠合并数据133
5.1.2主键合并数据136
5.1.3重叠合并数据139
5.1.4任务实现140
任务5.2清洗数据141
5.2.1检测与处理重复值141
5.2.2检测与处理缺失值146
5.2.3检测与处理异常值149
5.2.4任务实现152
任务5.3标准化数据154
5.3.1离差标准化数据154
5.3.2标准差标准化数据155
5.3.3小数定标标准化数据156
5.3.4任务实现157
任务5.4转换数据158
5.4.1哑变量处理类别型数据158
5.4.2离散化连续型数据160
5.4.3任务实现162
小结163
实训164
实训1插补用户用电量数据缺失值164
实训2合并线损、用电量趋势与线路告警数据164
实训3标准化建模专家样本数据164
课后习题165
第6章使用scikit-learn构建模型167
任务6.1使用sklearn转换器处理数据167
6.1.1加载datasets模块中的数据集167
6.1.2将数据集划分为训练集和测试集170
6.1.3使用sklearn转换器进行数据预处理与降维172
6.1.4任务实现174
任务6.2构建并评价聚类模型176
6.2.1使用sklearn估计器构建聚类模型176
6.2.2评价聚类模型179
6.2.3任务实现182
任务6.3构建并评价分类模型183
6.3.1使用sklearn估计器构建分类模型183
6.3.2评价分类模型186
6.3.3任务实现188
任务6.4构建并评价回归模型190
6.4.1使用sklearn估计器构建线性回归模型190
6.4.2评价回归模型193
6.4.3任务实现194
小结196
实训196
实训1使用sklearn处理wine和wine_quality数据集196
实训2构建基于wine数据集的K-Means聚类模型196
实训3构建基于wine数据集的SVM分类模型197
实训4构建基于wine_quality数据集的回归模型197
课后习题198
第7章航空公司客户价值分析199
任务7.1了解航空公司现状与客户价值分析199
7.1.1了解航空公司现状200
7.1.2认识客户价值分析201
7.1.3熟悉航空客户价值分析的步骤与流程201
任务7.2预处理航空客户数据202
7.2.1处理数据缺失值与异常值202
7.2.2构建航空客户价值分析关键特征202
7.2.3标准化LRFMC模型的5个特征206
7.2.4任务实现207
任务7.3使用K-Means算法进行客户分群209
7.3.1了解K-Means聚类算法209
7.3.2分析聚类结果210
7.3.3模型应用213
7.3.4任务实现214
小结215
实训215
实训1处理信用卡数据异常值215
实训2构造信用卡客户风险评价关键特征217
实训3构建K-Means聚类模型218
课后习题218
第8章财政收入预测分析220
任务8.1了解财政收入预测的背景与方法220
8.1.1分析财政收入预测背景220
8.1.2了解财政收入预测的方法222
8.1.3熟悉财政收入预测的步骤与流程223
任务8.2分析财政收入数据特征的相关性223
8.2.1了解相关性分析223
8.2.2分析计算结果224
8.2.3任务实现225
任务8.3使用Lasso回归选取财政收入预测的关键特征225
8.3.1了解Lasso回归方法226
8.3.2分析Lasso回归结果227
8.3.3任务实现227
任务8.4使用灰色预测和SVR构建财政收入预测模型228
8.4.1了解灰色预测算法228
8.4.2了解SVR算法229
8.4.3分析预测结果232
8.4.4任务实现234
小结236
实训236
实训1求取企业所得税各特征间的相关系数236
实训2选取企业所得税预测关键特征237
实训3构建企业所得税预测模型237
课后习题237
第9章家用热水器用户行为分析与事件识别239
任务9.1了解家用热水器用户行为分析的背景与步骤239
9.1.1分析家用热水器行业现状240
9.1.2了解热水器采集数据基本情况240
9.1.3熟悉家用热水器用户行为分析的步骤与流程241
任务9.2预处理热水器用户用水数据242
9.2.1删除冗余特征242
9.2.2划分用水事件243
9.2.3确定单次用水事件时长阈值244
9.2.4任务实现246
任务9.3构建用水行为特征并筛选用水事件247
9.3.1构建用水时长与频率特征248
9.3.2构建用水量与波动特征249
9.3.3筛选候选洗浴事件250
9.3.4任务实现251
任务9.4构建行为事件分析的BP神经网络模型255
9.4.1了解BP神经网络算法原理255
9.4.2构建模型259
9.4.3评估模型260
9.4.4任务实现260
小结263
实训263
实训1清洗运营商客户数据263
实训2筛选客户运营商数据264
实训3构建神经网络预测模型265
课后习题265
附录A267
附录B270
参考文献295
学习笔记
Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。 Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等 。 定义 (推荐学习:Python视频教程) 用户可以通过电子邮件,Dropbox,GitHub 和 Jupyter Notebook Viewer,将 Jupyter Notebook 分享给其他人。 在Jupyter Notebook 中,代码可以实时的生成图像,视频,LaTeX和JavaScript。 使用 数据挖掘领域中最热门的比赛 Kaggle 里的资料都是Jupyter 格式 。 架构 Jupyter组件 Jupyter包含以下组件: Jupyter Notebook 和 ……
本文实例讲述了Python实现的微信好友数据分析功能。分享给大家供大家参考,具体如下: 这里主要利用python对个人微信好友进行分析并把结果输出到一个html文档当中,主要用到的python包为 itchat , pandas , pyecharts 等 1、安装itchat 微信的python sdk,用来获取个人好友关系。获取的代码 如下: import itchatimport pandas as pdfrom pyecharts import Geo, Baritchat.login()friends = itchat.get_friends(update=True)[0:]def User2dict(User): User_dict = {} User_dict["NickName"] = User["NickName"] if User["NickName"] else "NaN" User_dict["City"] = User["City"] if User["City"] else "NaN" User_dict["Sex"] = User["Sex"] if User["Sex"] else 0 User_dict["Signature"] = User["Signature"] if User["Signature"] else "NaN" ……
基于微信开放的个人号接口python库itchat,实现对微信好友的获取,并对省份、性别、微信签名做数据分析。 效果: 直接上代码,建三个空文本文件stopwords.txt,newdit.txt、unionWords.txt,下载字体simhei.ttf或删除字体要求的代码,就可以直接运行。 #wxfriends.py 2018-07-09import itchatimport sysimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']#绘图时可以显示中文plt.rcParams['axes.unicode_minus']=False#绘图时可以显示中文import jiemport jieba.posseg as psegfrom scipy.misc import imreadfrom wordcloud import WordCloudfrom os import path#解决编码问题non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd) #获取好友信息def getFriends():……
Python数据分析之双色球基于线性回归算法预测下期中奖结果示例
本文实例讲述了Python数据分析之双色球基于线性回归算法预测下期中奖结果。分享给大家供大家参考,具体如下: 前面讲述了关于双色球的各种算法,这里将进行下期双色球号码的预测,想想有些小激动啊。 代码中使用了线性回归算法,这个场景使用这个算法,预测效果一般,各位可以考虑使用其他算法尝试结果。 发现之前有很多代码都是重复的工作,为了让代码看的更优雅,定义了函数,去调用,顿时高大上了 #!/usr/bin/python# -*- coding:UTF-8 -*-#导入需要的包import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport operatorfrom sklearn import datasets,linear_modelfrom sklearn.linear_model import LogisticRegression#读取文件d……
以上就是本次介绍的Python数据电子书的全部相关内容,希望我们整理的资源能够帮助到大家,感谢大家对鬼鬼的支持。
注·获取方式:私信(666)