当前位置:首页 » 编程语言 » python大数据实例

python大数据实例

发布时间: 2023-02-22 23:47:21

㈠ 如何利用python进行数据分析

近年来分析学在数据、网络、金融等领域获得了突出的地位。应用各种软件组合起来进行数据收集,数据管理,以及数据分析,得出的结论用作商业决策,业务需求分析等等。分析学用于研究一个产品的市场效应,银行的贷款决定,这些都只是分析学的冰山一角。它在大数据,安全,数字和软件分析等领域有很深远的影响,下面是Python在分析学中的主要作用的一个延续:
在这个信息过载的世界,只有那些可以利用解析数据的优势来得出见解的人会获益。Python对于大数据的解释和分析具有很重要的作用。分析公司开发的很多工具都是基于Python来约束大数据块。分析师们会发现Python并不难学,它是一个强有力的数据管理和业务支持的媒介。
使用单一的语言来处理数据有它的好处。如果你以前曾经使用过C++或者java,那么对你来说,Python应该很简单。数据分析可以使用Python实现,有足够的Python库来支持数据分析。 Pandas是一个很好的数据分析工具,因为它的工具和结构很容易被用户掌握。对于大数据来说它无疑是一个最合适的选择。即使是在数据科学领域,Python也因为它的“开发人员友好性”而使其他语言相形见绌。一个数据科学家熟悉Python的可能性要比熟悉其他语言的可能性高得多。
除了Python在数据分析中那些很明显的优点(易学,大量的在线社区等等)之外,在数据科学中的广泛使用,以及我们今天看到的大多数基于网络的分析,是Python在数据分析领域得以广泛传播的主要原因。
不论是金融衍生品还时大数据分析,Python都发挥了重要的作用。就前者而言,Python能够很好地和其它系统,软件工具以及数据流结合在一起,当然也包括R。用Python来对大数据做图表效果更好,它在速度和帮助方面也一样可靠。有些公司使用Python进行预测分析和统计分析。

㈡ python大数据挖掘系列之基础知识入门 知识整理(入门教程含源码

Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。

Python数据分析与挖掘技术概述

所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等。
数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升。数据挖掘技术可以帮助我们更好的发现事物之间的规律。所以我们可以利用数据挖掘技术可以帮助我们更好的发现事物之间的规律。比如发掘用户潜在需求,实现信息的个性化推送,发现疾病与病状甚至病与药物之间的规律等。

预先善其事必先利其器

我们首先聊聊数据分析的模块有哪些:

下面就说说这些模块的基础使用。

numpy模块安装与使用

安装:
下载地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/
我这里下载的包是1.11.3版本,地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
下载好后,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安装的numpy版本一定要是带mkl版本的,这样能够更好支持numpy

numpy简单使用

生成随机数

主要使用numpy下的random方法。

pandas

使用 pip install pandas 即可

直接上代码:
下面看看pandas输出的结果, 这一行的数字第几列,第一列的数字是行数,定位一个通过第一行,第几列来定位:

常用方法如下:

下面看看pandas对数据的统计,下面就说说每一行的信息

转置功能:把行数转换为列数,把列数转换为行数,如下所示:

通过pandas导入数据

pandas支持多种输入格式,我这里就简单罗列日常生活最常用的几种,对于更多的输入方式可以查看源码后者官网。

CSV文件

csv文件导入后显示输出的话,是按照csv文件默认的行输出的,有多少列就输出多少列,比如我有五列数据,那么它就在prinit输出结果的时候,就显示五列

excel表格

依赖于xlrd模块,请安装它。
老样子,原滋原味的输出显示excel本来的结果,只不过在每一行的开头加上了一个行数

读取sql

依赖于PyMySQL,所以需要安装它。pandas把sql作为输入的时候,需要制定两个参数,第一个是sql语句,第二个是sql连接实例。

读取HTML

依赖于lxml模块,请安装它。
对于HTTPS的网页,依赖于BeautifulSoup4,html5lib模块。
读取HTML只会读取HTML里的表格,也就是只读取

显示的是时候是通过python的列表展示,同时添加了行与列的标识

读取txt文件

输出显示的时候同时添加了行与列的标识

scipy

安装方法是先下载whl格式文件,然后通过pip install “包名” 安装。whl包下载地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl

matplotlib 数据可视化分析

我们安装这个模块直接使用pip install即可。不需要提前下载whl后通过 pip install安装。

下面请看代码:

下面说说修改图的样式

关于图形类型,有下面几种:

关于颜色,有下面几种:

关于形状,有下面几种:

我们还可以对图稍作修改,添加一些样式,下面修改圆点图为红色的点,代码如下:

我们还可以画虚线图,代码如下所示:

还可以给图添加上标题,x,y轴的标签,代码如下所示

直方图

利用直方图能够很好的显示每一段的数据。下面使用随机数做一个直方图。

Y轴为出现的次数,X轴为这个数的值(或者是范围)

还可以指定直方图类型通过histtype参数:

图形区别语言无法描述很详细,大家可以自信尝试。

举个例子:

子图功能

什么是子图功能呢?子图就是在一个大的画板里面能够显示多张小图,每个一小图为大画板的子图。
我们知道生成一个图是使用plot功能,子图就是subplog。代码操作如下:

我们现在可以通过一堆数据来绘图,根据图能够很容易的发现异常。下面我们就通过一个csv文件来实践下,这个csv文件是某个网站的文章阅读数与评论数。


先说说这个csv的文件结构,第一列是序号,第二列是每篇文章的URL,第三列每篇文章的阅读数,第四列是每篇评论数。


我们的需求就是把评论数作为Y轴,阅读数作为X轴,所以我们需要获取第三列和第四列的数据。我们知道获取数据的方法是通过pandas的values方法来获取某一行的值,在对这一行的值做切片处理,获取下标为3(阅读数)和4(评论数)的值,但是,这里只是一行的值,我们需要是这个csv文件下的所有评论数和阅读数,那怎么办?聪明的你会说,我自定义2个列表,我遍历下这个csv文件,把阅读数和评论数分别添加到对应的列表里,这不就行了嘛。呵呵,其实有一个更快捷的方法,那么就是使用T转置方法,这样再通过values方法,就能直接获取这一评论数和阅读数了,此时在交给你matplotlib里的pylab方法来作图,那么就OK了。了解思路后,那么就写吧。

下面看看代码:

㈢ 《零起点Python大数据与量化交易》pdf下载在线阅读,求百度网盘云资源

《零起点Python大数据与量化交易》(何海群)电子书网盘下载免费在线阅读

链接:https://pan..com/s/1NU-wBfdVmrtklf9xuq1d3A

密码:v1pf

书名:零起点Python大数据与量化交易

作者:何海群

豆瓣评分:3.9

出版社:电子工业出版社

出版年份:2017-2

页数:444

内容简介:

《零起点Python大数据与量化交易》是国内较早关于Python大数据与量化交易的原创图书,配合zwPython开发平台和zwQuant开源量化软件学习,是一套完整的大数据分析、量化交易的学习教材,可直接用于实盘交易。《零起点Python大数据与量化交易》有三大特色:第一,以实盘个案分析为主,全程配有Python代码;第二,包含大量的图文案例和Python源码,无须专业编程基础,懂Excel即可开始学习;第三,配有专业的zwPython集成开发平台、zwQuant量化软件和zwDat数据包。

《零起点Python大数据与量化交易》内容源自笔者的原版教学课件,虽然限于篇幅和载体,省略了视频和部分环节,但核心内容都有保留,配套的近百套Python教学程序没有进行任何删减。考虑到广大入门读者的需求,笔者在各个核心函数环节增添了函数流程图。

㈣ 大数据与python有什么关系,学完大数据以后能做Python吗

大数据可以看作一门学科,python是一种编程语言,大数据的课程安排中肯定包含python学习。

给你举个例子:南京北大青鸟大数据学习需要掌握:Java编程基础,Hadoop生态圈,Spark相关技术,Python,项目开发实战,系统管理优化,企业使用阿里云平台开发所需要的技术等。

毕业后可以从事python相关工作。

㈤ 《Python金融大数据分析》pdf下载在线阅读,求百度网盘云资源

《Python金融大数据分析》([德] 伊夫·希尔皮斯科)电子书网盘下载免费在线阅读

资源链接:

链接:https://pan..com/s/1qfMtZd2Mn3gtbVfg7fOfOg

提取码:4io4

书名:Python金融大数据分析

作者:[德] 伊夫·希尔皮斯科

译者:姚军

豆瓣评分:7.7

出版社:人民邮电出版社

出版年份:2015-12

页数:511

内容简介:唯一一本详细讲解使用Python分析处理金融大数据的专业图书;金融应用开发领域从业人员必读。

Python凭借其简单、易读、可扩展性以及拥有巨大而活跃的科学计算社区,在需要分析、处理大量数据的金融行业得到了广泛而迅速的应用,并且成为该行业开发核心应用的首选编程语言。《Python金融大数据分析》提供了使用Python进行数据分析,以及开发相关应用程序的技巧和工具。

《Python金融大数据分析》总计分为3部分,共19章,第1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了金融分析和应用程序开发中最重要的Python库、技术和方法,其内容涵盖了Python的数据类型和结构、用matplotlib进行数据可视化、金融时间序列数据处理、高性能输入/输出操作、高性能的Python技术和库、金融学中需要的多种数学工具、随机数生成和随机过程模拟、Python统计学应用、Python和Excel的集成、Python面向对象编程和GUI的开发、Python与Web技术的集成,以及基于Web应用和Web服务的开发;第3部分关注的是蒙特卡洛模拟期权与衍生品定价实际应用的开发工作,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值、波动率期权等知识。

《Python金融大数据分析》适合对使用Python进行大数据分析、处理感兴趣的金融行业开发人员阅读。

作者简介:Yves Hilpsch是Python Quants(德国)股份有限公司的创始人和任事股东,也是Python Quants(纽约)有限责任公司的共同创办人。该集团提供基于Python的金融和衍生品分析软件(参见http://pythonquants.com,http://quant-platfrom.com和http://dx-analytics.com),以及和Python及金融相关的咨询、开发和培训服务。

Yves还是Derivatives Analytics with Python(Wiley Finance,2015)的作者。作为获得数理金融学博士学位的商业管理专业研究生,他在萨尔州大学讲授计算金融学中的数值化方法课程。

㈥ python怎么做大数据分析

数据获取:公开数据、Python爬虫外部数据的获取方式主要有以下两种。(推荐学习:Python视频教程)
第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。
另一种获取外部数据的方式就是爬虫。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。
在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urlpb、BeautifulSoup、requests、scrapy)实现网页爬虫。
掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、使用cookie信息、模拟用户登录、抓包分析、搭建代理池等等,来应对不同网站的反爬虫限制。
数据存取:SQL语言
在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:
提取特定情况下的数据
数据库的增、删、查、改
数据的分组聚合、如何建立多个表之间的联系
数据预处理:Python(pandas)
很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
选择:数据访问
缺失值处理:对缺失数据行进行删除或填充
重复值处理:重复值的判断与删除
异常值处理:清除不必要的空格和极端、异常数据
相关操作:描述性统计、Apply、直方图等
合并:符合各种逻辑关系的合并操作
分组:数据划分、分别执行函数、数据重组
Reshaping:快速生成数据透视表
概率论及统计学知识
需要掌握的知识点如下:
基本统计量:均值、中位数、众数、百分位数、极值等
其他描述性统计量:偏度、方差、标准差、显着性等
其他统计知识:总体和样本、参数和统计量、ErrorBar
概率分布与假设检验:各种分布、假设检验流程
其他概率论知识:条件概率、贝叶斯等
有了统计学的基本知识,你就可以用这些统计量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。
Python 数据分析
掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:
回归分析:线性回归、逻辑回归
基本的分类算法:决策树、随机森林……
基本的聚类算法:k-means……
特征工程基础:如何用特征选择优化模型
调参方法:如何调节参数优化模型
Python 数据分析包:scipy、numpy、scikit-learn等
在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。
当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。
然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去了解如何通过特征提取、参数调节来提升预测的精度。
你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python怎么做大数据分析的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!

㈦ 如何使用Python分析大数据

毫不夸张地说,大数据已经成为任何商业交流中不可或缺的一部分。桌面和移动搜索向全世界的营销人员和公司以空前的规模提供着数据,并且随着物联网的到来,大量用以消费的数据还会呈指数级增长。这种消费数据对于想要更好地定位目标客户、弄懂人们怎样使用他们的产品或服务,并且通过收集信息来提高利润的公司来说无疑是个金矿。
筛查数据并找到企业真正可以使用的结果的角色落到了软件开发者、数据科学家和统计学家身上。现在有很多工具辅助大数据分析,但最受欢迎的就是Python。
为什么选择Python?
Python最大的优点就是简单易用。这个语言有着直观的语法并且还是个强大的多用途语言。这一点在大数据分析环境中很重要,并且许多企业内部已经在使用Python了,比如Google,YouTube,迪士尼,和索尼梦工厂。还有,Python是开源的,并且有很多用于数据科学的类库。所以,大数据市场急需Python开发者,不是Python开发者的专家也可以以相当块速度学习这门语言,从而最大化用在分析数据上的时间,最小化学习这门语言的时间。
用Python进行数据分析之前,你需要从Continuum.io下载Anaconda。这个包有着在Python中研究数据科学时你可能需要的一切东西。它的缺点是下载和更新都是以一个单元进行的,所以更新单个库很耗时。但这很值得,毕竟它给了你所需的所有工具,所以你不需要纠结。
现在,如果你真的要用Python进行大数据分析的话,毫无疑问你需要成为一个Python开发者。这并不意味着你需要成为这门语言的大师,但你需要了解Python的语法,理解正则表达式,知道什么是元组、字符串、字典、字典推导式、列表和列表推导式——这只是开始。
各种类库
当你掌握了Python的基本知识点后,你需要了解它的有关数据科学的类库是怎样工作的以及哪些是你需要的。其中的要点包括NumPy,一个提供高级数学运算功能的基础类库,SciPy,一个专注于工具和算法的可靠类库,Sci-kit-learn,面向机器学习,还有Pandas,一套提供操作DataFrame功能的工具。
除了类库之外,你也有必要知道Python是没有公认的最好的集成开发环境(IDE)的,R语言也一样。所以说,你需要亲手试试不同的IDE再看看哪个更能满足你的要求。开始时建议使用IPython Notebook,Rodeo和Spyder。和各种各样的IDE一样,Python也提供各种各样的数据可视化库,比如说Pygal,Bokeh和Seaborn。这些数据可视化工具中最必不可少的就是Matplotlib,一个简单且有效的数值绘图类库。
所有的这些库都包括在了Anaconda里面,所以下载了之后,你就可以研究一下看看哪些工具组合更能满足你的需要。用Python进行数据分析时你会犯很多错误,所以得小心一点。一旦你熟悉了安装设置和每种工具后,你会发现Python是目前市面上用于大数据分析的最棒的平台之一。
希望能帮到你!

㈧ Python处理大数据的技巧, 2022-06-21

(2022.06.21 Tues)
收集整理了Python处理大量数据的方法,基于Pandas,Numpy等数据处理工具。

用df的 info 方法并指定 memory_usage='deep' 参数,或使用df的 memory_usage 方法,并指定 deep=True 参数。

在读取数据文件的方法中加入 nrows 参数选择前n行数据读取。

也可以跳过m行之后,读取从m行开始的n行

当然也可以在 skiprows 选项中指定范围,保留headers,即保留列名

可以指定 skiprows 中需要忽略的行,用list或array导入即可。下面是随机

如果在这个指令中忽略 nrows=10 指令,则读取跳过100行之后的所有数据。

预先指定读入的列,缩小加载范围

不同的数据类型占用了不同大小的空间,对于尚未读取的数据,可以提前指定类型( dtype );对于已经读入的数据,通过 astype 方法修改成占空间更小的数据类型。

在读入数据之前,通过字典指定每列对应的数据类型,读入之后按照此类型显示数据。

通过改变数据类型减少空间的案例。修改DataFrame d 中的一列 Sctcd ,注意到该列的数据都是1、2、0,而保存类型是object,果断改成 uint8 ,通过 df.info(memory_usage='deep') 方法对比内存的使用情况。仅仅修改了一个列的类型,数据大小减小3MB。

一个特殊而高效的案例是当某一列的值只有有限个,不管是int还是string格式,且该列unque值远小于列的长度,可以将该列转变为 category 类,将节省大量空间。这么做当然也有代价,比如转换成 category 类的数据将无法做max/min等运算,由数字转换成的 category 也不能进行数值运算。这种转换对内存的节省效果显着,下面是对比。 dcol 只有两列, Stkcd 和 Stknme ,查看unique的个数与总长度,显示unique远小于总长度,分别转换为 category 类型,内存节省超过90%!

通过Pandas的 read_csv 方法中的 chunksize 选项指定读取的块大小,并迭代地对读取的块做运算。

1 https冒号//www点dataquest点io/blog/pandas-big-data/
2 CSDN - python 处理大量数据_如何用python处理大量数据
2 How to Work with BIG Datasets on 16G RAM (+Dask), on kaggle

㈨ Python在大数据领域是怎么来应用的

有些办法。比如使用array, numpy.array。 主要的思路是节约内存的使用,同时提高数据查询的效率。

如果能够注意这些内容,处理几个GB的数据还是轻松的。 接下来就是分布式计算。 按maprece的思路。数据尽量在本地处理。所以算法上要优化。主要是分段。

不管怎么说。这几个方面所有的语言都是相同的。即使你用的是C语言也一样要考虑到这些。大数据因为量大,算法也需要改进。

对于不能改进的算法(好象还没有遇到)也只好用python接C的扩展模块了。 好在python与C有很好的接口。轻松就接上。

最近比较流行的方法是使用cython,一方面可以略略提高速度,另一方面与C有无缝的接口。

java在处理大数据方面速度与易用性略略占优势。C++也经常会使用在核心算法上。语言本身都不是问题。大部分时候大数据还是在处理算法本身而不是语言。

在原型阶段python很方便,快速,灵活。所以大数据处理中python是几种语言中最适合的。特别是早期探索阶段。业务与算法经常变更。到了后期基本上都是C++了。java比较适合工程化阶段。

热点内容
安卓备份哪个系统好 发布:2024-11-08 02:35:50 浏览:736
unlinklinux 发布:2024-11-08 02:31:30 浏览:663
nginxphp编译 发布:2024-11-08 02:11:57 浏览:979
粉笔手机号注册的密码是什么 发布:2024-11-08 02:01:49 浏览:249
漆黑的魅影文件夹 发布:2024-11-08 01:55:15 浏览:691
c语言病毒编写 发布:2024-11-08 01:55:03 浏览:989
原神修改密码的格式是什么 发布:2024-11-08 01:53:49 浏览:728
从安卓转移数据到苹果报无法通信是什么问题 发布:2024-11-08 01:40:27 浏览:289
云存储虚拟化 发布:2024-11-08 01:32:27 浏览:101
小米10青春版怎么修改密码 发布:2024-11-08 01:31:03 浏览:270