当前位置:首页 » 编程语言 » java做爬虫

java做爬虫

发布时间: 2023-02-15 05:06:29

java能不能写爬虫

可以的,jsoup

⑵ java如何做高级爬虫

下面说明知乎爬虫的源码和涉及主要技术点:
(1)程序package组织

(2)模拟登录(爬虫主要技术点1)
要爬去需要登录的网站数据,模拟登录是必要可少的一步,而且往往是难点。知乎爬虫的模拟登录可以做一个很好的案例。要实现一个网站的模拟登录,需要两大步骤是:(1)对登录的请求过程进行分析,找到登录的关键请求和步骤,分析工具可以有IE自带(快捷键F12)、Fiddler、HttpWatcher;(2)编写代码模拟登录的过程。

(3)网页下载(爬虫主要技术点2)
模拟登录后,便可下载目标网页html了。知乎爬虫基于HttpClient写了一个网络连接线程池,并且封装了常用的get和post两种网页下载的方法。

(4)自动获取网页编码(爬虫主要技术点3)
自动获取网页编码是确保下载网页html不出现乱码的前提。知乎爬虫中提供方法可以解决绝大部分乱码下载网页乱码问题。

(5)网页解析和提取(爬虫主要技术点4)
使用Java写爬虫,常见的网页解析和提取方法有两种:利用开源Jar包Jsoup和正则。一般来说,Jsoup就可以解决问题,极少出现Jsoup不能解析和提取的情况。Jsoup强大功能,使得解析和提取异常简单。知乎爬虫采用的就是Jsoup。 ...展开下面说明知乎爬虫的源码和涉及主要技术点:
(1)程序package组织

(2)模拟登录(爬虫主要技术点1)
要爬去需要登录的网站数据,模拟登录是必要可少的一步,而且往往是难点。知乎爬虫的模拟登录可以做一个很好的案例。要实现一个网站的模拟登录,需要两大步骤是:(1)对登录的请求过程进行分析,找到登录的关键请求和步骤,分析工具可以有IE自带(快捷键F12)、Fiddler、HttpWatcher;(2)编写代码模拟登录的过程。

(3)网页下载(爬虫主要技术点2)
模拟登录后,便可下载目标网页html了。知乎爬虫基于HttpClient写了一个网络连接线程池,并且封装了常用的get和post两种网页下载的方法。

(4)自动获取网页编码(爬虫主要技术点3)
自动获取网页编码是确保下载网页html不出现乱码的前提。知乎爬虫中提供方法可以解决绝大部分乱码下载网页乱码问题。

(5)网页解析和提取(爬虫主要技术点4)
使用Java写爬虫,常见的网页解析和提取方法有两种:利用开源Jar包Jsoup和正则。一般来说,Jsoup就可以解决问题,极少出现Jsoup不能解析和提取的情况。Jsoup强大功能,使得解析和提取异常简单。知乎爬虫采用的就是Jsoup。

(6)正则匹配与提取(爬虫主要技术点5)
虽然知乎爬虫采用Jsoup来进行网页解析,但是仍然封装了正则匹配与提取数据的方法,因为正则还可以做其他的事情,如在知乎爬虫中使用正则来进行url地址的过滤和判断。

(7)数据去重(爬虫主要技术点6)
对于爬虫,根据场景不同,可以有不同的去重方案。(1)少量数据,比如几万或者十几万条的情况,使用Map或Set便可;(2)中量数据,比如几百万或者上千万,使用BloomFilter(着名的布隆过滤器)可以解决;(3)大量数据,上亿或者几十亿,Redis可以解决。知乎爬虫给出了BloomFilter的实现,但是采用的Redis进行去重。

(8)设计模式等Java高级编程实践
除了以上爬虫主要的技术点之外,知乎爬虫的实现还涉及多种设计模式,主要有链模式、单例模式、组合模式等,同时还使用了Java反射。除了学习爬虫技术,这对学习设计模式和Java反射机制也是一个不错的案例。
4. 一些抓取结果展示收起

⑶ Java网络爬虫怎么实现

网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成。x0dx0a传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。对于垂直搜索来说,聚焦爬虫,即有针对性地爬取特定主题网页的爬虫,更为适合。x0dx0ax0dx0a以下是一个使用java实现的简单爬虫核心代码:x0dx0apublic void crawl() throws Throwable { x0dx0a while (continueCrawling()) { x0dx0a CrawlerUrl url = getNextUrl(); //获取待爬取队列中的下一个URL x0dx0a if (url != null) { x0dx0a printCrawlInfo(); x0dx0a String content = getContent(url); //获取URL的文本信息 x0dx0a x0dx0a //聚焦爬虫只爬取与主题内容相关的网页,这里采用正则匹配简单处理 x0dx0a if (isContentRelevant(content, this.regexpSearchPattern)) { x0dx0a saveContent(url, content); //保存网页至本地 x0dx0a x0dx0a //获取网页内容中的链接,并放入待爬取队列中 x0dx0a Collection urlStrings = extractUrls(content, url); x0dx0a addUrlsToUrlQueue(url, urlStrings); x0dx0a } else { x0dx0a System.out.println(url + " is not relevant ignoring ..."); x0dx0a } x0dx0a x0dx0a //延时防止被对方屏蔽 x0dx0a Thread.sleep(this.delayBetweenUrls); x0dx0a } x0dx0a } x0dx0a closeOutputStream(); x0dx0a}x0dx0aprivate CrawlerUrl getNextUrl() throws Throwable { x0dx0a CrawlerUrl nextUrl = null; x0dx0a while ((nextUrl == null) && (!urlQueue.isEmpty())) { x0dx0a CrawlerUrl crawlerUrl = this.urlQueue.remove(); x0dx0a //doWeHavePermissionToVisit:是否有权限访问该URL,友好的爬虫会根据网站提供的"Robot.txt"中配置的规则进行爬取 x0dx0a //isUrlAlreadyVisited:URL是否访问过,大型的搜索引擎往往采用BloomFilter进行排重,这里简单使用HashMap x0dx0a //isDepthAcceptable:是否达到指定的深度上限。爬虫一般采取广度优先的方式。一些网站会构建爬虫陷阱(自动生成一些无效链接使爬虫陷入死循环),采用深度限制加以避免 x0dx0a if (doWeHavePermissionToVisit(crawlerUrl) x0dx0a && (!isUrlAlreadyVisited(crawlerUrl)) x0dx0a && isDepthAcceptable(crawlerUrl)) { x0dx0a nextUrl = crawlerUrl; x0dx0a // System.out.println("Next url to be visited is " + nextUrl); x0dx0a } x0dx0a } x0dx0a return nextUrl; x0dx0a}x0dx0aprivate String getContent(CrawlerUrl url) throws Throwable { x0dx0a //HttpClient4.1的调用与之前的方式不同 x0dx0a HttpClient client = new DefaultHttpClient(); x0dx0a HttpGet httpGet = new HttpGet(url.getUrlString()); x0dx0a StringBuffer strBuf = new StringBuffer(); x0dx0a HttpResponse response = client.execute(httpGet); x0dx0a if (HttpStatus.SC_OK == response.getStatusLine().getStatusCode()) { x0dx0a HttpEntity entity = response.getEntity(); x0dx0a if (entity != null) { x0dx0a BufferedReader reader = new BufferedReader( x0dx0a new InputStreamReader(entity.getContent(), "UTF-8")); x0dx0a String line = null; x0dx0a if (entity.getContentLength() > 0) { x0dx0a strBuf = new StringBuffer((int) entity.getContentLength()); x0dx0a while ((line = reader.readLine()) != null) { x0dx0a strBuf.append(line); x0dx0a } x0dx0a } x0dx0a } x0dx0a if (entity != null) { x0dx0a nsumeContent(); x0dx0a } x0dx0a } x0dx0a //将url标记为已访问 x0dx0a markUrlAsVisited(url); x0dx0a return strBuf.toString(); x0dx0a}x0dx0apublic static boolean isContentRelevant(String content, x0dx0aPattern regexpPattern) { x0dx0a boolean retValue = false; x0dx0a if (content != null) { x0dx0a //是否符合正则表达式的条件 x0dx0a Matcher m = regexpPattern.matcher(content.toLowerCase()); x0dx0a retValue = m.find(); x0dx0a } x0dx0a return retValue; x0dx0a}x0dx0apublic List extractUrls(String text, CrawlerUrl crawlerUrl) { x0dx0a Map urlMap = new HashMap(); x0dx0a extractHttpUrls(urlMap, text); x0dx0a extractRelativeUrls(urlMap, text, crawlerUrl); x0dx0a return new ArrayList(urlMap.keySet()); x0dx0a} x0dx0aprivate void extractHttpUrls(Map urlMap, String text) { x0dx0a Matcher m = (text); x0dx0a while (m.find()) { x0dx0a String url = m.group(); x0dx0a String[] terms = url.split("a href=\""); x0dx0a for (String term : terms) { x0dx0a // System.out.println("Term = " + term); x0dx0a if (term.startsWith("http")) { x0dx0a int index = term.indexOf("\""); x0dx0a if (index > 0) { x0dx0a term = term.substring(0, index); x0dx0a } x0dx0a urlMap.put(term, term); x0dx0a System.out.println("Hyperlink: " + term); x0dx0a } x0dx0a } x0dx0a } x0dx0a} x0dx0aprivate void extractRelativeUrls(Map urlMap, String text, x0dx0a CrawlerUrl crawlerUrl) { x0dx0a Matcher m = relativeRegexp.matcher(text); x0dx0a URL textURL = crawlerUrl.getURL(); x0dx0a String host = textURL.getHost(); x0dx0a while (m.find()) { x0dx0a String url = m.group(); x0dx0a String[] terms = url.split("a href=\""); x0dx0a for (String term : terms) { x0dx0a if (term.startsWith("/")) { x0dx0a int index = term.indexOf("\""); x0dx0a if (index > 0) { x0dx0a term = term.substring(0, index); x0dx0a } x0dx0a String s = //" + host + term; x0dx0a urlMap.put(s, s); x0dx0a System.out.println("Relative url: " + s); x0dx0a } x0dx0a } x0dx0a } x0dx0a x0dx0a}x0dx0apublic static void main(String[] args) { x0dx0a try { x0dx0a String url = ""; x0dx0a Queue urlQueue = new LinkedList(); x0dx0a String regexp = "java"; x0dx0a urlQueue.add(new CrawlerUrl(url, 0)); x0dx0a NaiveCrawler crawler = new NaiveCrawler(urlQueue, 100, 5, 1000L, x0dx0a regexp); x0dx0a // boolean allowCrawl = crawler.areWeAllowedToVisit(url); x0dx0a // System.out.println("Allowed to crawl: " + url + " " + x0dx0a // allowCrawl); x0dx0a crawler.crawl(); x0dx0a } catch (Throwable t) { x0dx0a System.out.println(t.toString()); x0dx0a t.printStackTrace(); x0dx0a } x0dx0a}

⑷ java爬虫代理如何实现

爬虫离不开的就是代理服务器了,如果我们不用http来爬虫,ip不更改的情况下,是很难进行的。当我们在使用爬虫爬取网站资料,速度快,可以不知疲倦地连续工作。但是由于爬虫软件在访问网站时,行为过于频繁,远超人力操作速度,就很容易被网站察觉,而封掉用户的IP。
所以,使用爬虫软件时,为了防止IP被封,或者IP已经被封,还想用自己的IP访问封了自己IP的网站时,就要用到代理IP了。http能够对我们的ip地址进行更改,这一操作能够有效减少了网站的ip限制的影响,对爬虫是很有帮助的。Ipidea含有240+国家地区的ip,真实住宅网络高度匿名强力保护本地信息。

⑸ java爬虫抓取指定数据

根据java网络编程相关的内容,使用jdk提供的相关类可以得到url对应网页的html页面代码。

针对得到的html代码,通过使用正则表达式即可得到我们想要的内容。

比如,我们如果想得到一个网页上所有包括“java”关键字的文本内容,就可以逐行对网页代码进行正则表达式的匹配。最后达到去除html标签和不相关的内容,只得到包括“java”这个关键字的内容的效果。

从网页上爬取图片的流程和爬取内容的流程基本相同,但是爬取图片的步骤会多一步。

需要先用img标签的正则表达式匹配获取到img标签,再用src属性的正则表达式获取这个img标签中的src属性的图片url,然后再通过缓冲输入流对象读取到这个图片url的图片信息,配合文件输出流将读到的图片信息写入到本地即可。

⑹ java适合写爬虫吗

JAVA也可以实现爬虫,比如jsoup包,一个非常方便解析html的工具呢。
不过相对来说,java语言笨重,稍微有些麻烦。

⑺ 用java编写 网络爬虫求代码和流程 急

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import java.util.*;
import java.util.regex.*;
import javax.swing.*;
import javax.swing.table.*;//一个Web的爬行者(注:爬行在这里的意思与抓取,捕获相同)
public class SearchCrawler extends JFrame{
//最大URL保存值
private static final String[] MAX_URLS={"50","100","500","1000"};

//缓存robot禁止爬行列表
private HashMap disallowListCache=new HashMap();

//搜索GUI控件
private JTextField startTextField;
private JComboBox maxComboBox;
private JCheckBox limitCheckBox;
private JTextField logTextField;
private JTextField searchTextField;
private JCheckBox caseCheckBox;
private JButton searchButton;

//搜索状态GUI控件
private JLabel crawlingLabel2;
private JLabel crawledLabel2;
private JLabel toCrawlLabel2;
private JProgressBar progressBar;
private JLabel matchesLabel2;

//搜索匹配项表格列表
private JTable table;

//标记爬行机器是否正在爬行
private boolean crawling;

//写日志匹配文件的引用
private PrintWriter logFileWriter;

//网络爬行者的构造函数
public SearchCrawler(){
//设置应用程序标题栏
setTitle("搜索爬行者");
//设置窗体大小
setSize(600,600);

//处理窗体关闭事件
addWindowListener(new WindowAdapter(){
public void windowClosing(WindowEvent e){
actionExit();
}
});

//设置文件菜单
JMenuBar menuBar=new JMenuBar();
JMenu fileMenu=new JMenu("文件");
fileMenu.setMnemonic(KeyEvent.VK_F);
JMenuItem fileExitMenuItem=new JMenuItem("退出",KeyEvent.VK_X);
fileExitMenuItem.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e){
actionExit();
}
});
fileMenu.add(fileExitMenuItem);
menuBar.add(fileMenu);
setJMenuBar(menuBar);

⑻ 如何用Java写一个爬虫

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

import java.io.File;
import java.net.URL;
import java.net.URLConnection;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Scanner;
import java.util.UUID;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class DownMM {
public static void main(String[] args) throws Exception {
//out为输出的路径,注意要以\\结尾
String out = "D:\\JSP\\pic\\java\\";
try{
File f = new File(out);
if(! f.exists()) {
f.mkdirs();
}
}catch(Exception e){
System.out.println("no");
}

String url = "http://www.mzitu.com/share/comment-page-";
Pattern reg = Pattern.compile("<img src=\"(.*?)\"");
for(int j=0, i=1; i<=10; i++){
URL uu = new URL(url+i);
URLConnection conn = uu.openConnection();
conn.setRequestProperty("User-Agent", "Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko");
Scanner sc = new Scanner(conn.getInputStream());
Matcher m = reg.matcher(sc.useDelimiter("\\A").next());
while(m.find()){
Files.(new URL(m.group(1)).openStream(), Paths.get(out + UUID.randomUUID() + ".jpg"));
System.out.println("已下载:"+j++);
}
}
}

⑼ 北大青鸟设计培训:Java多线程爬虫实现

一、需求1.定时抓取固定网站新闻标题、内容、发表时间和来源。
2.程序需要支持分布式、多线程二、设计1.网站是固定,但是未来也可能添加新的网站去抓取,每个网站内容节点设计都不一样,这样就需要支持动态可配置来新增网站以方便未来的扩展,这样就需要每次都需要开发介入。
2.网站html节点的结构可能发生变化,所以也要支持提取节点可配置。
3.怎样支持分布式?暂时最简单的想法就是:多机器部署程序,还有新搞一台或者部署程序其中一台制作一个定时任务,定时开启每台机器应该抓取哪个网站,暂时不能支持同一个网站同时可以支持被多台机器同时抓取,这样会比较麻烦,要用到分布式队列。
所以暂时一个网站同时只会被单台机器抓取。
4.多线程,怎样多线程?多线程抓取我这边有两个实现:(1)一个线程抓取一个网站,维护一个自己的url队列做广度抓取,同时抓取多个网站。
如图:(2)多个线程同时抓取不同的网站。
如图:以上两张办法其实各有优点,也给有缺点,看我们怎么取舍了。
方法1:每个线程创建一个自己的队列,图中的queue可以不用concurrentQueue,优点:不涉及到控制并发,每个网站一个线程抓取一个网站,抓取完毕即自动回收销毁线程。
控制方便。
缺点:线程数不可以扩展,例如当只有3个网站,你最多只能开3个线程来抓取,不能开更多,有一定的局限性。
方法2:N个线程同时抓取N个网站,线程数和网站数目不挂钩,优点:线程数可以调整并且和和抓取网站数量无关。
3个网站我们可以开4个5个或者10个这个可以根据您的硬件资源进行调整。
缺点:需要控制并发,并且要控制什么时候销毁线程(thread1空闲,并且queue为空不代表任务可以结束,可能thread2结果还没返回),当被抓取的网站响应较慢时,会拖慢整个爬虫进度。
三、实现抓取方式最终还是选择了方法二,因为线程数可配置!使用技术:jfinal用了之后才发现这东西不适合,但是由于项目进度问题,还是使用了。
maven项目管理jettyservermysqleclipse开发项目需要重点攻破的难点:(1)合理的控制N个线程正常的抓取网站,并且当所有线程工作都完成了并且需要抓取的队列为空时,N个线程同时退出销毁。
(2)不同网站设计节点不一样,需要通过配置解决各个网站需要抓取的URL和抓取节点内容在html节点的位置。
(3)个性化内容处理,由于html结构设计问题,北大青鸟http://www.kmbdqn.cn/认为抓取的内容可能有些多余的html标签,或者多余的内容该怎么处理。

⑽ java 实现网络爬虫用哪个爬虫框架比较好

有些人问,开发网络爬虫应该选择Nutch、Crawler4j、WebMagic、scrapy、WebCollector还是其他的?这里按照我的经验随便扯淡一下:

上面说的爬虫,基本可以分3类:

1.分布式爬虫:Nutch

2.JAVA单机爬虫:Crawler4j、WebMagic、WebCollector

3. 非JAVA单机爬虫:scrapy

第一类:分布式爬虫

爬虫使用分布式,主要是解决两个问题:

1)海量URL管理

2)网速

现在比较流行的分布式爬虫,是Apache的Nutch。但是对于大多数用户来说,Nutch是这几类爬虫里,最不好的选择,理由如下:

1)Nutch是为搜索引擎设计的爬虫,大多数用户是需要一个做精准数据爬取(精抽取)的爬虫。Nutch运行的一套流程里,有三分之二是为了搜索引擎而设计的。对精抽取没有太大的意义。也就是说,用Nutch做数据抽取,会浪费很多的时间在不必要的计算上。而且如果你试图通过对Nutch进行二次开发,来使得它适用于精抽取的业务,基本上就要破坏Nutch的框架,把Nutch改的面目全非,有修改Nutch的能力,真的不如自己重新写一个分布式爬虫框架了。

2)Nutch依赖hadoop运行,hadoop本身会消耗很多的时间。如果集群机器数量较少,爬取速度反而不如单机爬虫快。

3)Nutch虽然有一套插件机制,而且作为亮点宣传。可以看到一些开源的Nutch插件,提供精抽取的功能。但是开发过Nutch插件的人都知道,Nutch的插件系统有多蹩脚。利用反射的机制来加载和调用插件,使得程序的编写和调试都变得异常困难,更别说在上面开发一套复杂的精抽取系统了。而且Nutch并没有为精抽取提供相应的插件挂载点。Nutch的插件有只有五六个挂载点,而这五六个挂载点都是为了搜索引擎服务的,并没有为精抽取提供挂载点。大多数Nutch的精抽取插件,都是挂载在“页面解析”(parser)这个挂载点的,这个挂载点其实是为了解析链接(为后续爬取提供URL),以及为搜索引擎提供一些易抽取的网页信息(网页的meta信息、text文本)。

4)用Nutch进行爬虫的二次开发,爬虫的编写和调试所需的时间,往往是单机爬虫所需的十倍时间不止。了解Nutch源码的学习成本很高,何况是要让一个团队的人都读懂Nutch源码。调试过程中会出现除程序本身之外的各种问题(hadoop的问题、hbase的问题)。

5)很多人说Nutch2有gora,可以持久化数据到avro文件、hbase、mysql等。很多人其实理解错了,这里说的持久化数据,是指将URL信息(URL管理所需要的数据)存放到avro、hbase、mysql。并不是你要抽取的结构化数据。其实对大多数人来说,URL信息存在哪里无所谓。

6)Nutch2的版本目前并不适合开发。官方现在稳定的Nutch版本是nutch2.2.1,但是这个版本绑定了gora-0.3。如果想用hbase配合nutch(大多数人用nutch2就是为了用hbase),只能使用0.90版本左右的hbase,相应的就要将hadoop版本降到hadoop 0.2左右。而且nutch2的官方教程比较有误导作用,Nutch2的教程有两个,分别是Nutch1.x和Nutch2.x,这个Nutch2.x上写的是可以支持到hbase 0.94。但是实际上,这个Nutch2.x的意思是Nutch2.3之前、Nutch2.2.1之后的一个版本,这个版本在官方的SVN中不断更新。而且非常不稳定(一直在修改)。

所以,如果你不是要做搜索引擎,尽量不要选择Nutch作为爬虫。有些团队就喜欢跟风,非要选择Nutch来开发精抽取的爬虫,其实是冲着Nutch的名气(Nutch作者是Doug Cutting),当然最后的结果往往是项目延期完成。

如果你是要做搜索引擎,Nutch1.x是一个非常好的选择。Nutch1.x和solr或者es配合,就可以构成一套非常强大的搜索引擎了。如果非要用Nutch2的话,建议等到Nutch2.3发布再看。目前的Nutch2是一个非常不稳定的版本。

热点内容
悠悠解压 发布:2024-11-08 14:06:54 浏览:371
低频访问存储 发布:2024-11-08 14:05:31 浏览:679
html5坦克大战源码 发布:2024-11-08 14:04:35 浏览:406
输错密码锁定什么意思 发布:2024-11-08 14:02:07 浏览:541
存储计算逻辑 发布:2024-11-08 13:49:35 浏览:543
java算法排序算法 发布:2024-11-08 13:42:20 浏览:883
u盘随身系统linux 发布:2024-11-08 13:34:34 浏览:411
b1422压缩机锁定 发布:2024-11-08 13:32:43 浏览:635
上传按钮图片 发布:2024-11-08 13:30:57 浏览:920
安卓手机相机如何拍摄短视频 发布:2024-11-08 13:28:42 浏览:411