python打开csv
A. python之csv模块
csv文件具有格式简单,快速存取,兼容性好等特点,工程、金融、商业等很多数据文件都是采用csv文件保存和处理。工作中数据处理也用到了csv,简要总结下使用经验,特别是那些由于本地兼容性导致的与官方文档的差异使用。
csv(comma Seperated Values)文件的格式非常简单,类似一个文本文档,每一行保存一条数据,同一行中的各个数据通常采用逗号(或tab)分隔。
python自带了csv模块,专门用于处理csv文件的读取和存档。
csv模块中,主要由两种方式存取csv文件:函数方法;类方法。
csv.reader(csvfile,dialect ='excel',** fmtparams)
返回一个reader对象,它将迭代给定csvfile中的行。
csvfile可以是任何支持迭代器协议的对象,并在每次next()调用其方法时返回一个字符串- 文件对象和列表对象都是合适的。如果csvfile是一个文件对象,那么它必须在平台上以“b”标志打开,这会产生影响。可以给出可选的 dialect 参数,该参数用于定义特定于CSV方言的一组参数。它可以是类的子类的实例,也可以是函数Dialect返回的字符串之一 list_dialects()。其他可选的fmtparams可以给出关键字参数来覆盖当前方言中的各个格式参数。
csv.writer(csvfile,dialect ='excel',** fmtparams)
返回一个编写器对象,负责将用户的数据转换为给定的类文件对象上的分隔字符串。
csvfile可以是带有write()方法的任何对象 。如果csvfile是一个文件对象,那么它必须在平台上以“b”标志打开,这会产生影响。 可以给出可选的dialect参数,该参数用于定义特定于CSV方言的一组参数。它可以是类的子类的实例,也可以是函数Dialect返回的字符串之一 list_dialects()。可以给出其他可选的fmtparams关键字参数来覆盖当前dialect中的各个格式参数。
class csv.DictReader(f,fieldnames = None,restkey = None,restval = None,dialect ='excel',* args,** kwds)
创建一个像常规阅读器一样操作的对象,但将读取的信息映射到一个dict,其键由可选的 fieldnames 参数给出。 字段名 的参数是一个序列,其元素与输入数据的顺序中的字段相关联。这些元素成为结果字典的关键。如果省略 fieldnames 参数,则文件 f 的第一行中的 值 将用作字段名。如果读取的行包含的字段多于字段名序列,则将剩余数据添加 为由restkey 值键入的序列。如果读取的行的字段数少于字段名序列,则其余的键将采用可选的 restval 参数的值。任何其他可选或关键字参数都将传递给基础 reader 实例。
class csv.DictWriter(f,fieldnames,restval ='',extrasaction ='raise',dialect ='excel',* args,** kwds)
创建一个像常规编写器一样操作的对象,但将字典映射到输出行。的字段名的参数是一个序列识别在哪些值在传递给字典中的顺序按键的writerow()方法被写入到文件˚F。如果字典缺少字段名中的键,则可选的restval参数指定要写入的值。如果传递给方法的字典包含在字段名中找不到的键,则可选的extrasaction参数指示要采取的操作。如果设置为a 则被提升。如果设置为writerow()'raise'ValueError'ignore',字典中的额外值将被忽略。任何其他可选或关键字参数都将传递给基础 writer实例。
请注意,与DictReader类不同,它的fieldnames参数DictWriter不是可选的。由于Python的dict 对象没有排序,因此没有足够的信息来推断应该将行写入文件f的顺序。
B. python生成csv文件一定要用vscode打开吗
python生成csv文件一定要用vscode打开的,因为csv编辑的数据都是通过固定的数据格式进行生成的,只能用vscode软件才能识别数据正常进行打开
C. python中列表csv文件,打开后怎么都在一列
用txt打开你的csv源文件里,看看单元格之间是用什么符号分割的,pandas默认是逗号‘,’分割的,你这个好像是空格分割的,试试这个代码df=pd.read_csv('.csv',sep='')。sep=,注意引号里面是个空格符哦。
D. python解决csv文件用excel打开乱码问题
【问题】
python输出的csv文件用excel打开,里面的中文会变成乱码,但用window下的记事本或mac下的numbers打开就正常显示。
原因是python输出的文件是utf-8编码写入的,excel默认以gbk方式读取,导致乱码发生。
【解决方法1】文件产出时encoding设置为utf-8-sig
用excel打开csv时,excel会先检查文件的第一个字符,来了解这个文件是什么编码方式,如果这个字符是BOM,excel就知道用utf-8的方式打开这个文件。python自带了处理BOM的编码方式uft-8-sig,因此只需要在文件产出时将encoding设置为utf-8-sig。
如果文件不是由python产出的,只需要以utf-8方式读入再以utf-8-sig方式存储即可
【解决方法2】懒人法,适用只含简体中文的文件
用记事本打开,点击另存为,右下角编码方式选择“ANSI”,这个过程是把这个文件改成gbk编码格式,excel就是默认用gbk方式打开的。
参考: Python写的csv文件,如何让 Excel 双击打开不乱码? - 云+社区 - 腾讯云
对编码格式一窍不通的可以阅读以下网页
python笔记——二进制和文件编码_砍柴姑娘Jourosy的博客-CSDN博客
编码方式之ASCII、ANSI、Unicode概述 - 蓝海人 - 博客园
【简单总结】:
1. 首先需要了解 字符集 和 字符编码 两个概念,字符集定义了字符和二进制的一一对应关系,字符编码规定了如何将字符的编号存储到计算机中。
2. Unicode是字符集,包含了全球文字的唯一编码,utf-8是编码方式,将unicode以某种方式存储到计算机中。
3. 有些字符集和编码是结合在一起的,称作字符集还是编码都无所谓,比如ASCII,GBK
4. ANSI是各个国家地区不同扩展编码方式的总称,互不兼容(可以看出来通用性没有utf好)
5. 不同编码方式在转换时,通常需要以unicode作为中间编码,即先将其他编码的字符串解码(decode)成unicode,再从unicode编码(encode)成另一种编码。
E. python中读取csv文件
python中读取csv方法有3种:
第一种,普通方法读取(open函数打开,然后使用for循环读取内容);
第二种,使用用CSV标准库读取;
第三种,用pandas模块读取。
F. python 读取CSV 文件
读取一个CSV 文件
最全的
一个简化版本
filepath_or_buffer : str,pathlib。str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)
可以是URL,可用URL类型包括:http, ftp, s3和文件。对于多文件正在准备中
本地文件读取实例:://localhost/path/to/table.csv
**sep **: str, default ‘,’
指定分隔符。如果不指定参数,则会尝试使用逗号分隔。分隔符长于一个字符并且不是‘s+’,将使用python的语法分析器。并且忽略数据中的逗号。正则表达式例子:' '
**delimiter **: str, default None
定界符,备选分隔符(如果指定该参数,则sep参数失效)
delim_whitespace : boolean, default False.
指定空格(例如’ ‘或者’ ‘)是否作为分隔符使用,等效于设定sep='s+'。如果这个参数设定为Ture那么delimiter 参数失效。
在新版本0.18.1支持
header : int or list of ints, default ‘infer’
指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。如果明确设定header=0 就会替换掉原来存在列名。header参数可以是一个list例如:[0,1,3],这个list表示将文件中的这些行作为列标题(意味着每一列有多个标题),介于中间的行将被忽略掉。
注意:如果skip_blank_lines=True 那么header参数忽略注释行和空行,所以header=0表示第一行数据而不是文件的第一行。
**names **: array-like, default None
用于结果的列名列表,如果数据文件中没有列标题行,就需要执行header=None。默认列表中不能出现重复,除非设定参数mangle_pe_cols=True。
index_col : int or sequence or False, default None
用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。
如果文件不规则,行尾有分隔符,则可以设定index_col=False 来是的pandas不适用第一列作为行索引。
usecols : array-like, default None
返回一个数据子集,该列表中的值必须可以对应到文件中的位置(数字可以对应到指定的列)或者是字符传为文件中的列名。例如:usecols有效参数可能是 [0,1,2]或者是 [‘foo’, ‘bar’, ‘baz’]。使用这个参数可以加快加载速度并降低内存消耗。
as_recarray : boolean, default False
不赞成使用:该参数会在未来版本移除。请使用pd.read_csv(...).to_records()替代。
返回一个Numpy的recarray来替代DataFrame。如果该参数设定为True。将会优先squeeze参数使用。并且行索引将不再可用,索引列也将被忽略。
**squeeze **: boolean, default False
如果文件值包含一列,则返回一个Series
**prefix **: str, default None
在没有列标题时,给列添加前缀。例如:添加‘X’ 成为 X0, X1, ...
**mangle_pe_cols **: boolean, default True
重复的列,将‘X’...’X’表示为‘X.0’...’X.N’。如果设定为false则会将所有重名列覆盖。
dtype : Type name or dict of column -> type, default None
每列数据的数据类型。例如 {‘a’: np.float64, ‘b’: np.int32}
**engine **: {‘c’, ‘python’}, optional
Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.
使用的分析引擎。可以选择C或者是python。C引擎快但是Python引擎功能更加完备。
converters : dict, default None
列转换函数的字典。key可以是列名或者列的序号。
true_values : list, default None
Values to consider as True
false_values : list, default None
Values to consider as False
**skipinitialspace **: boolean, default False
忽略分隔符后的空白(默认为False,即不忽略).
skiprows : list-like or integer, default None
需要忽略的行数(从文件开始处算起),或需要跳过的行号列表(从0开始)。
skipfooter : int, default 0
从文件尾部开始忽略。 (c引擎不支持)
skip_footer : int, default 0
不推荐使用:建议使用skipfooter ,功能一样。
nrows : int, default None
需要读取的行数(从文件头开始算起)。
na_values : scalar, str, list-like, or dict, default None
一组用于替换NA/NaN的值。如果传参,需要制定特定列的空值。默认为‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘nan’`.
**keep_default_na **: bool, default True
如果指定na_values参数,并且keep_default_na=False,那么默认的NaN将被覆盖,否则添加。
**na_filter **: boolean, default True
是否检查丢失值(空字符串或者是空值)。对于大文件来说数据集中没有空值,设定na_filter=False可以提升读取速度。
verbose : boolean, default False
是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。
skip_blank_lines : boolean, default True
如果为True,则跳过空行;否则记为NaN。
**parse_dates **: boolean or list of ints or names or list of lists or dict, default False
infer_datetime_format : boolean, default False
如果设定为True并且parse_dates 可用,那么pandas将尝试转换为日期类型,如果可以转换,转换方法并解析。在某些情况下会快5~10倍。
**keep_date_col **: boolean, default False
如果连接多列解析日期,则保持参与连接的列。默认为False。
date_parser : function, default None
用于解析日期的函数,默认使用dateutil.parser.parser来做转换。Pandas尝试使用三种不同的方式解析,如果遇到问题则使用下一种方式。
1.使用一个或者多个arrays(由parse_dates指定)作为参数;
2.连接指定多列字符串作为一个列作为参数;
3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates指定)作为参数。
**dayfirst **: boolean, default False
DD/MM格式的日期类型
**iterator **: boolean, default False
返回一个TextFileReader 对象,以便逐块处理文件。
chunksize : int, default None
文件块的大小, See IO Tools docs for more information on iterator and chunksize.
compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’
直接使用磁盘上的压缩文件。如果使用infer参数,则使用 gzip, bz2, zip或者解压文件名中以‘.gz’, ‘.bz2’, ‘.zip’, or ‘xz’这些为后缀的文件,否则不解压。如果使用zip,那么ZIP包中国必须只包含一个文件。设置为None则不解压。
新版本0.18.1版本支持zip和xz解压
thousands : str, default None
千分位分割符,如“,”或者“."
decimal : str, default ‘.’
字符中的小数点 (例如:欧洲数据使用’,‘).
float_precision : string, default None
Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.
指定
**lineterminator **: str (length 1), default None
行分割符,只在C解析器下使用。
**quotechar **: str (length 1), optional
引号,用作标识开始和解释的字符,引号内的分割符将被忽略。
quoting : int or csv.QUOTE_* instance, default 0
控制csv中的引号常量。可选 QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3)
doublequote : boolean, default True
双引号,当单引号已经被定义,并且quoting 参数不是QUOTE_NONE的时候,使用双引号表示引号内的元素作为一个元素使用。
escapechar : str (length 1), default None
当quoting 为QUOTE_NONE时,指定一个字符使的不受分隔符限值。
comment : str, default None
标识着多余的行不被解析。如果该字符出现在行首,这一行将被全部忽略。这个参数只能是一个字符,空行(就像skip_blank_lines=True)注释行被header和skiprows忽略一样。例如如果指定comment='#' 解析‘#empty a,b,c 1,2,3’ 以header=0 那么返回结果将是以’a,b,c'作为header。
encoding : str, default None
指定字符集类型,通常指定为'utf-8'. List of Python standard encodings
dialect : str or csv.Dialect instance, default None
如果没有指定特定的语言,如果sep大于一个字符则忽略。具体查看csv.Dialect 文档
tupleize_cols : boolean, default False
Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)
error_bad_lines : boolean, default True
如果一行包含太多的列,那么默认不会返回DataFrame ,如果设置成false,那么会将改行剔除(只能在C解析器下使用)。
warn_bad_lines : boolean, default True
如果error_bad_lines =False,并且warn_bad_lines =True 那么所有的“bad lines”将会被输出(只能在C解析器下使用)。
**low_memory **: boolean, default True
分块加载到内存,再低内存消耗中解析。但是可能出现类型混淆。确保类型不被混淆需要设置为False。或者使用dtype 参数指定类型。注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,而忽略类型(只能在C解析器中有效)
**buffer_lines **: int, default None
不推荐使用,这个参数将会在未来版本移除,因为他的值在解析器中不推荐使用
compact_ints : boolean, default False
不推荐使用,这个参数将会在未来版本移除
如果设置compact_ints=True ,那么任何有整数类型构成的列将被按照最小的整数类型存储,是否有符号将取决于use_unsigned 参数
use_unsigned : boolean, default False
不推荐使用:这个参数将会在未来版本移除
如果整数列被压缩(i.e. compact_ints=True),指定被压缩的列是有符号还是无符号的。
memory_map : boolean, default False
如果使用的文件在内存内,那么直接map文件使用。使用这种方式可以避免文件再次进行IO操作。
ref:
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
G. python读取csv文件报错position4
一、文件路径报错
因为在python之中文件路径都是以字符串类型出现的,所以在字符串对象的编写语法本身没有错误时,那么出现报错的唯一原因就是这个文件路径找不到文件。这种问题主要经常出现在已经发布部署到服务器上的python程序,因为在开发时很多时候都是用绝对路径来读取文件的,环境改变之后从磁盘根目录读取的绝对路径就是无法使用了。
二、解决方法
那么正确的做事实际上就是先导入os模块,然后调用getcwd()方法查看当前python程序,也就是py脚本文件处在哪个文件路径之中,代码示例如下所示:
import os
os.getcwd()
print(os.getcwd())
然后再打开文件夹查看一下所要读取的csv文件在哪个文件目录,然后在文件资源管理器内打开csv文件所在的文件目录并将其复制后粘贴到python文件所在的同级目录下,接下来就可以使用绝对不会出错的相对路径来读取该csv文件了。只需要写上csv文件的名称就可以来将其在python程序内打开并读取,代码示例如下所示:
import pandas as pd
train = pd.read_csv
H. python 怎么读csv文件
CSV文件本质上就是文本文件,只不过每行的数据用逗号分隔。
所以你当成文本文件打开一行一行的读然后拆分就可以了。
data=[]
withopen(r'd: empdemo.csv','r')ascsv_file:
forlineincsv_file:
data.append(line.strip().split(','))
print(data)
#另外Python标准库里有个CSV模块可以用。
importcsv
withopen(file_path,'rb')ascsv_file:
data=list(csv.reader(csv_file))[1:]#去掉首行的列名
还有就是可以用Pandas这个库,dataframe有导入csv功能。
I. python中怎么读取csv文件
Python读取CSV文件方法如下:
如下是一个CVS文件
使用Python打开CSV可以直接使用open函数打开,然后使用reader函数读取内容,实现代码如下:
运行结果如下:
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python中怎么读取csv文件的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!