Python样条插值
Ⅰ 双线性插值法原理 python实现
码字不易,如果此文对你有所帮助,请帮忙点赞,感谢!
一. 双线性插值法原理:
① 何为线性插值?
插值就是在两个数之间插入一个数,线性插值原理图如下:
② 各种插值法:
插值法的第一步都是相同的,计算目标图(dstImage)的坐标点对应原图(srcImage)中哪个坐标点来填充,计算公式为:
srcX = dstX * (srcWidth/dstWidth)
srcY = dstY * (srcHeight/dstHeight)
(dstX,dstY)表示目标图像的某个坐标点,(srcX,srcY)表示与之对应的原图像的坐标点。srcWidth/dstWidth 和 srcHeight/dstHeight 分别表示宽和高的放缩比。
那么问题来了,通过这个公式算出来的 srcX, scrY 有可能是小数,但是原图像坐标点是不存在小数的,都是整数,得想办法把它转换成整数才行。
不同插值法的区别就体现在 srcX, scrY 是小数时,怎么将其变成整数去取原图像中的像素值。
最近邻插值(Nearest-neighborInterpolation):看名字就很直白,四舍五入选取最接近的整数。这样的做法会导致像素变化不连续,在目标图像中产生锯齿边缘。
双线性插值(Bilinear Interpolation):双线性就是利用与坐标轴平行的两条直线去把小数坐标分解到相邻的四个整数坐标点。权重与距离成反比。
双三次插值(Bicubic Interpolation):与双线性插值类似,只不过用了相邻的16个点。但是需要注意的是,前面两种方法能保证两个方向的坐标权重和为1,但是双三次插值不能保证这点,所以可能出现像素值越界的情况,需要截断。
③ 双线性插值算法原理
假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。最常见的情况,f就是一个像素点的像素值。首先在 x 方向进行线性插值,然后再在 y 方向上进行线性插值,最终得到双线性插值的结果。
④ 举例说明
二. python实现灰度图像双线性插值算法:
灰度图像双线性插值放大缩小
import numpy as np
import math
import cv2
def double_linear(input_signal, zoom_multiples):
'''
双线性插值
:param input_signal: 输入图像
:param zoom_multiples: 放大倍数
:return: 双线性插值后的图像
'''
input_signal_cp = np.(input_signal) # 输入图像的副本
input_row, input_col = input_signal_cp.shape # 输入图像的尺寸(行、列)
# 输出图像的尺寸
output_row = int(input_row * zoom_multiples)
output_col = int(input_col * zoom_multiples)
output_signal = np.zeros((output_row, output_col)) # 输出图片
for i in range(output_row):
for j in range(output_col):
# 输出图片中坐标 (i,j)对应至输入图片中的最近的四个点点(x1,y1)(x2, y2),(x3, y3),(x4,y4)的均值
temp_x = i / output_row * input_row
temp_y = j / output_col * input_col
x1 = int(temp_x)
y1 = int(temp_y)
x2 = x1
y2 = y1 + 1
x3 = x1 + 1
y3 = y1
x4 = x1 + 1
y4 = y1 + 1
u = temp_x - x1
v = temp_y - y1
# 防止越界
if x4 >= input_row:
x4 = input_row - 1
x2 = x4
x1 = x4 - 1
x3 = x4 - 1
if y4 >= input_col:
y4 = input_col - 1
y3 = y4
y1 = y4 - 1
y2 = y4 - 1
# 插值
output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])
return output_signal
# Read image
img = cv2.imread("../paojie_g.jpg",0).astype(np.float)
out = double_linear(img,2).astype(np.uint8)
# Save result
cv2.imshow("result", out)
cv2.imwrite("out.jpg", out)
cv2.waitKey(0)
cv2.destroyAllWindows()
三. 灰度图像双线性插值实验结果:
四. 彩色图像双线性插值python实现
def BiLinear_interpolation(img,dstH,dstW):
scrH,scrW,_=img.shape
img=np.pad(img,((0,1),(0,1),(0,0)),'constant')
retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)
for i in range(dstH-1):
for j in range(dstW-1):
scrx=(i+1)*(scrH/dstH)
scry=(j+1)*(scrW/dstW)
x=math.floor(scrx)
y=math.floor(scry)
u=scrx-x
v=scry-y
retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]
return retimg
im_path='../paojie.jpg'
image=np.array(Image.open(im_path))
image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)
image2=Image.fromarray(image2.astype('uint8')).convert('RGB')
image2.save('3.png')
五. 彩色图像双线性插值实验结果:
六. 最近邻插值算法和双三次插值算法可参考:
① 最近邻插值算法: https://www.cnblogs.com/wojianxin/p/12515061.html
https://blog.csdn.net/Ibelievesunshine/article/details/104936006
② 双三次插值算法: https://www.cnblogs.com/wojianxin/p/12516762.html
https://blog.csdn.net/Ibelievesunshine/article/details/104942406
七. 参考内容:
https://www.cnblogs.com/wojianxin/p/12515061.html
https://blog.csdn.net/Ibelievesunshine/article/details/104939936
Ⅱ python的image.nearest代表什么意思
from PIL import Imageimport os.pathimport globdef convertjpg(jpgfile,outdir,width=1280,height=720): img=Image.open(jpgfile) new_img=img.resize((width,height),Image.BILINEAR) new_img.save(os.path.join(outdir,os.path.basename(jpg...
Ⅲ csaps()函数对应python什么函数
return 值:只能返回一次,只要执行return函数就终止
返回值:没有类型限制,也没有个数限制
没有return:None
返回一个值
返回多个值:元组
Ⅳ 如何通过python实现三次样条插值
spline函数可以实现三次样条插值 x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x,y,xx); plot(x,y,'o',xx,yy) 另外fnplt csapi这两个函数也是三次样条插值函数,具体你可以help一下!
Ⅳ 在Python程序中的插值误差问题,怎么解决
代码如下所示:import numpy as npfrom matplotlib import pyplot as pltfrom scipy.interpolate import interp1dx=np.linspace(0,10*np.pi,num=20)y=np.sin(x)f1=interp1d(x,y,kind='linear')#线性插值f2=interp1d(x,y,kind='cubic')#三次样条插值x_pred=np.linspace(0,10*np.pi,num=1000)y1=f1(x_pred)y2=f2(x_pred)plt.figure()plt.plot(x_pred,y1,'r',label='linear')plt.plot(x,f1(x),'b--','origin')plt.legend()plt.show()plt.figure()plt.plot(x_pred,y2,'b--',label='cubic')plt.legend()plt.show()
Ⅵ python 线性插值
不知道有没有,可能python数学相关的库里会有吧
不过你写的也不对啊,取3个值,应该是4均分。
>>>defjunfen(start,end,num):
k=(end-start)/(num+1)
returnset([start+item*kforiteminrange(1,num+1)])
Ⅶ Python数据分析在数学建模中的应用汇总(持续更新中!)
1、Numpy常用方法使用大全(超详细)
1、Series和DataFrame简单入门
2、Pandas操作CSV文件的读写
3、Pandas处理DataFrame,Series进行作图
1、Matplotlib绘图之属性设置
2、Matplotlib绘制误差条形图、饼图、等高线图、3D柱形图
1、层次分析法(AHP)——算数平均值法、几何平均值法、特征值法(Python实现,超详细注释)
2、Python实现TOPSIS分析法(优劣解距离法)
3、Python实现线性插值和三次样条插值
4、Python实现线性函数的拟合算法
5、Python实现统计描述以及计算皮尔逊相关系数
6、Python实现迪杰斯特拉算法和贝尔曼福特算法求解最短路径
Ⅷ 气象 python 二维线性插值
scipy.interpolate.griddata(points, values, xi, method='linear', fill_value=nan, rescale=False)
官网: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html?highlight=griddata
一维数组,shape为(n,) ,是需要插值的变量数据
如果需要插值的变量var是一个多维数组,则需要转换成一维的
方法:var.ravel()
values的坐标,shape为(n,D),第一维需要与values长度相同,
D就是values的坐标轴个数
如果是在地图上,D为2,分别是lon、lat,是values中对应的每个数据的lat和lon
插值过后的新的坐标,shape为(m, D) ,第二维与points的第二维相同
插值方法,有 ‘linear’, ‘nearest’, ‘cubic’
nearest:返回最接近插值点的数据点的值
linear:线性插值
cubic:三次样条
用于填充输入点凸包之外的请求点的值。如果未提供,则默认值为 nan 。此选项对‘nearest’ 方法无效。
在执行插值之前将点重新缩放到单位立方体。如果某些输入维度具有不可比较的单位并且相差许多数量级,这将很有用。
Ⅸ “Scipy”样条插值在数据可视化中的运用
好久没有更新文章了,学校的教材发下来了,作业一下就变多了。
首先,把最终效果放出来:
运用样条插值,即 B-Spline ,可以使你在图表中使用曲线连接离散数据(在插值法中,这些离散数据称为 节点 )
正如你在上面所看到的那样,在Python中插值非常简单, Scipy 中的 interpolate 为你提供了样条插值所需要的一系列函数。
import部分就不多说了,
这里首先定义了一系列节点,这里数据是随机的,
接下来,首先使用 linspace 为插值提供所需的x值, splrep 根据节点计算了样条曲线的参数,最后将其传递给 splev 计算插值后的结果。
你可能是抱着想要用曲线连接节点的目的来看这篇文章,但看到这里还没搞懂插值法是个什么玩意,那么接下来的内容就是在讲数学中的插值法,与Python和Scipy已无关联。
插值法,就是在给定的节点中作出合适的函数,使得这条曲线 经过每一个节点 ,这也就是为什么在数据可视化中使用插值而不是其他方法的原因,因为插值后仍然能够准确知道每一节点所对应的值。
那么,是不是节点越多,插值的准确性就越高呢?
貌似是这样,毕竟节点越多,对曲线的限制条件就越多,那准确性不久越高了。
但是呢,如果你使用多节点直接插值(不是在程序中插值,因为程序会使用分段样条插值),你就会发现,曲线在两段有明显的震荡,并且节点越多,震荡越明显、越大:
这种现象被称为 Tolmé Runge 现象( 龙格现象 ),描述的就是这一问题。对此的数学证明在知乎上有, 传送门 。
通过龙格现象,我们会发现,当节点数量趋向于无穷时,插值的误差会趋向于无穷大:
那么,如何避免这一情况呢,可以把我们原先的等距节点替换成Chebyshev节点,但是如果我们的离散数据确实等距,这一方法不好用,那么就可以才用分段插值,我们的程序对龙格现象也是这样处理的。
分段插值就是将高次多项式拆分成多个低次多项式,一般都拆分成三次多项式。
由于插值和拟合常常一起出现,所以这里也简单提一下拟合。
拟合是对你给出的离散数据,作出于数据 差距最小 的函数,另外,按照拟合的结果,拟合也分线性拟合和非线性拟合。
拟合与插值的差别就在于,插值必须过节点,但是拟合不需要,所以拟合曲线的整体效果会更好,也就是更平滑。
拟合一般都用在数据分析里,因为拟合曲线更能够看出整体的变化趋势嘛。
这篇文章写起来难度还是想当大,如果我的描述有问题的话,欢迎评论区留言。
前往我的博客查看本文
Ⅹ 数值分析中的样条函数:使用scipy.interpolate.splrep函数实现
在 数学 学科 数值分析 中, 样条 是一种特殊的 函数 ,由 多项式 分段定义。样条的 英语 单词spline来源于可变形的样条工具,那是一种在 造船 和 工程制图 时用来画出光滑形状的工具。在中国大陆,早期曾经被称做“齿函数”。后来因为工程学术语中“放样”一词而得名。
在 插值 问题中,样条插值通常比 多项式插值 好用。用低阶的样条插值能产生和高阶的多项式插值类似的效果,并且可以避免被称为 龙格现象 的数值不稳定的出现。并且低阶的样条插值还具有“保凸”的重要性质。
在 计算机科学 的 计算机辅助设计 和 计算机图形学 中,样条通常是指分段定义的多项式 参数曲线 。由于样条构造简单,使用方便,拟合准确,并能近似 曲线拟合 和交互式曲线设计中复杂的形状,样条是这些领域中曲线的常用表示方法。
scipy.interpolate.splrep(x,y,w = None,xb = None,xe = None,k = 3,task = 0,s = None,t = None,full_output = 0,per = 0,quiet = 1 )
找到一维曲线的B样条曲线表示。
给定数据点集,确定区间上度k的平滑样条近似。(x[i], y[i])xb <= x <= xe
x,y: array_like
定义曲线y = f(x)的数据点。
w: array_like,optional
权重的严格正秩1数组,其长度与x和y相同。权重用于计算加权最小二乘样条拟合。如果y值中的误差具有矢量d给出的标准偏差,则w应为1 / d。默认值为1(len(x))。
xb, xe:float, optional
适合的间隔。如果为None,则它们分别默认为x [0]和x [-1]。
k: int,optional
花键拟合的程度。建议使用三次样条。甚至应避免使用k值,尤其是在s值小的情况下。1 <= k <= 5
task:{1, 0, -1}, optional
如果task == 0,则在给定的平滑因子s下找到t和c。
如果task == 1,则找到t和c作为平滑因子s的另一个值。对于同一组数据,必须先前有一个task = 0或task = 1的调用(t将存储为内部使用)
如果task = -1,则找到给定结点t的加权最小二乘样条曲线。这些应该是内部结,因为两端的结将自动添加。
s:float, optional
平滑条件。满足以下条件来确定平滑度:sum((w (y-g)) * 2,axis = 0)<= s其中g(x)是(x,y)的平滑插值。用户可以使用s来控制贴合度和贴合度之间的权衡。较大的s表示更平滑,而较小的s表示较不平滑。s的推荐值取决于权重w。如果权重代表y的标准偏差的倒数,则应在(m-sqrt(2 * m),m + sqrt(2 * m))范围内找到一个好的s值,其中m是x,y和w中的数据点。默认值:如果提供了权重,则s = m-sqrt(2 * m)。如果未提供权重,则s = 0.0(内插)。
t:array_like, optional
任务= -1所需的结。如果给出,则任务自动设置为-1。
f:full_outputbool, optional
如果非零,则返回可选输出。
per:bool, optional
如果非零,则将数据点视为周期为x [m-1]-x [0]的周期,然后返回平滑的周期样条近似。不使用y [m-1]和w [m-1]的值。
quiet:bool, optional
非零以禁止显示消息。不推荐使用此参数;请改用标准的Python警告过滤器。
Returns:
tck:tuple
元组(t,c,k),包含结向量,B样条系数和样条度。
fp:array, optional
样条近似值的平方残差的加权总和。
ier:int, optional
有关splrep成功的整数标志。如果ier <= 0,则表示成功。如果[1,2,3]中的ier发生错误,但未引发。否则会引发错误。
msg:str, optional
对应于整数标志ier的消息。
下面插值一个函数