cpython源码
A. 《python源码剖析深度探索动态语言核心技术》pdf下载在线阅读,求百度网盘云资源
《Python源码剖析》(陈儒)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/1dtk-nY5HtgXS3CIBVHJCRA
书名:Python源码剖析
作者:陈儒
豆瓣评分:8.8
出版社:电子工业出版社
出版年份:2008-6
页数:480
内容简介:
作为主流的动态语言,Python不仅简单易学、移植性好,而且拥有强大丰富的库的支持。此外,Python强大的可扩展性,让开发人员既可以非常容易地利用C/C++编写Python的扩展模块,还能将Python嵌入到C/C++程序中,为自己的系统添加动态扩展和动态编程的能力。.
为了更好地利用Python语言,无论是使用Python语言本身,还是将Python与C/C++交互使用,深刻理解Python的运行原理都是非常重要的。本书以CPython为研究对象,在C代码一级,深入细致地剖析了Python的实现。书中不仅包括了对大量Python内置对象的剖析,更将大量的篇幅用于对Python虚拟机及Python高级特性的剖析。通过此书,读者能够透彻地理解Python中的一般表达式、控制结构、异常机制、类机制、多线程机制、模块的动态加载机制、内存管理机制等核心技术的运行原理,同时,本书所揭示的动态语言的核心技术对于理解其他动态语言,如 Javascript、Ruby等也有较大的参考价值。..
本书适合于Python程序员、动态语言爱好者、C程序员阅读
B. python怎么看package源码
首先你要找到源码的位置,你可以使用下面的方法:
如果你可以在命令行运行python,你可以使用下面的命令查看目录。
>>>importstring
>>>string.__file__
'/usr/lib/python2.7/string.pyc'
>>>
对应目录下的string.py就是package的源码,不过有些库因为是c写的,会提示错误,这样的库就需要你下载python源码,直接看c的源文件了。
如果解决了您的问题请采纳!
如果未解决请继续追问!
C. python官网有几个下载文件,有什么区别如下
1.Windows x86 MSI Installer (2.7.8)
- 32位系统安装的python
2.Windows x86 MSI program database (2.7.8)
- 32位python源码的符号库。 如果做纯Python开发,为python的C接口开发准备的。
3.Windows X86-64 MSI Installer (2.7.8)
- 64位系统安装的python
4.Windows X86-64 MSI program database (2.7.8)
- 64位python源码的符号库。 如果做纯Python开发,为python的C接口开发准备的。
D. 我想知道如何查看python的源代码
查看脚本的话(python中部分函数是直接用C语言嵌入的,要在官网上搜C源码),可以使用Pycharm,或者其他IDLE,比如我想查看python中TensorFlow包的Session函数:
任意在pycharm内的一个.py文件中,输入这个函数
import tensorFlow as tf #载入包并命名为tf
tf.Session()
然后按住Ctrl按钮,左键单击Session,就自动打开了对应.py文件
另外一种方法是直接在python本地库中找对应的.py文件,(可以用help函数先搜索)
E. Python对象
众所周知,Python是一门面向对象的语言,在Python无论是数值、字符串、函数亦或是类型、类,都是对象。
对象是在 堆 上分配的结构,我们定义的所有变量、函数等,都存储于堆内存,而变量名、函数名则是一个存储于 栈 中、指向堆中具体结构的引用。
要想深入学习Python,首先需要知道Python对象的定义。
我们通常说的Python都是指CPython,底层由C语言实现,源码地址: cpython [GitHub]
Python对象的定义位于 Include/object.h ,是一个名为 PyObject 的结构体:
Python中的所有对象都继承自PyObejct,PyObject包含一个用于垃圾回收的双向链表,一个引用计数变量 ob_refcnt 和 一个类型对象指针 ob_type
从PyObejct的注释中,我们可以看到这样一句:每个指向 可变大小Python对象 的指针也可以转换为 PyVarObject* (可变大小的Python对象会在下文中解释)。 PyVarObejct 就是在PyObject的基础上多了一个 ob_size 字段,用于存储元素个数:
在PyObject结构中,还有一个类型对象指针 ob_type ,用于表示Python对象是什么类型,定义Python对象类型的是一个 PyTypeObject 接口体
实际定义是位于 Include/cpython/object.h 的 _typeobject :
在这个类型对象中,不仅包含了对象的类型,还包含了如分配内存大小、对象标准操作等信息,主要分为:
以Python中的 int类型 为例,int类型对象的定义如下:
从PyObject的定义中我们知道,每个对象的 ob_type 都要指向一个具体的类型对象,比如一个数值型对象 100 ,它的ob_type会指向 int类型对象PyLong_Type 。
PyTypeObject结构体第一行是一个PyObject_VAR_HEAD宏,查看宏定义可知PyTypeObject是一个变长对象
也就是说,归根结底 类型对象也是一个对象 ,也有ob_type属性,那 PyLong_Type 的 ob_type 是什么呢?
回到PyLong_Type的定义,第一行 PyVarObject_HEAD_INIT(&PyType_Type, 0) ,查看对应的宏定义
由以上关系可以知道, PyVarObject_HEAD_INIT(&PyType_Type, 0) = { { _PyObject_EXTRA_INIT 1, &PyType_Type } 0} ,将其代入 PyObject_VAR_HEAD ,得到一个变长对象:
这样看就很明确了,PyLong_Type的类型就是PyType_Typ,同理可知, Python类型对象的类型就是PyType_Type ,而 PyType_Type对象的类型是它本身
从上述内容中,我们知道了对象和对象类型的定义,那么根据定义,对象可以有以下两种分类
Python对象定义有 PyObject 和 PyVarObject ,因此,根据对象大小是否可变的区别,Python对象可以划分为 可变对象(变长对象) 和 不可变对象(定长对象)
原本的对象a大小并没有改变,只是s引用的对象改变了。这里的对象a、对象b就是定长对象
可以看到,变量l仍然指向对象a,只是对象a的内容发生了改变,数据量变大了。这里的对象a就是变长对象
由于存在以上特性,所以使用这两种对象还会带来一种区别:
声明 s2 = s ,修改s的值: s = 'new string' ,s2的值不会一起改变,因为只是s指向了一个新的对象,s2指向的旧对象的值并没有发生改变
声明 l2 = l ,修改l的值: l.append(6) ,此时l2的值会一起改变,因为l和l2指向的是同一个对象,而该对象的内容被l修改了
此外,对于 字符串 对象,Python还有一套内存复用机制,如果两个字符串变量值相同,那它们将共用同一个对象:
对于 数值型 对象,Python会默认创建0~2 8 以内的整数对象,也就是 0 ~ 256 之间的数值对象是共用的:
按照Python数据类型,对象可分为以下几类:
Python创建对象有两种方式,泛型API和和类型相关的API
这类API通常以 PyObject_xxx 的形式命名,可以应用在任意Python对象上,如:
使用 PyObjecg_New 创建一个数值型对象:
这类API通常只能作用于一种类型的对象上,如:
使用 PyLong_FromLong 创建一个数值型对象:
在我们使用Python声明变量的时候,并不需要为变量指派类型,在给变量赋值的时候,可以赋值任意类型数据,如:
从Python对象的定义我们已经可以知晓造成这个特点的原因了,Python创建对象时,会分配内存进行初始化,然后Python内部通过 PyObject* 变量来维护这个对象,所以在Python内部各函数直接传递的都是一种泛型指针 PyObject* ,这个指针所指向的对象类型是不固定的,只能通过所指对象的 ob_type 属性动态进行判断,而Python正是通过 ob_type 实现了多态机制
Python在管理维护对象时,通过引用计数来判断内存中的对象是否需要被销毁,Python中所有事物都是对象,所有对象都有引用计数 ob_refcnt 。
当一个对象的引用计数减少到0之后,Python将会释放该对象所占用的内存和系统资源。
但这并不意味着最终一定会释放内存空间,因为频繁申请释放内存会大大降低Python的执行效率,因此Python中采用了内存对象池的技术,是的对象释放的空间会还给内存池,而不是直接释放,后续需要申请空间时,优先从内存对象池中获取。