python解释器
㈠ python用什么解释器
Python的编辑器也是众多的,下面说下几种:
提问者使用的是dos的编辑器,这一种当然不舒服;
Python的自带的有两种:
2.1 Shell形式:这一种和dos一样很纠结,如下图:
其他的第三方,比如Eclips+PyDev等;
个人建议你使用2.2里面的Edit模式,启动方法是:
开始--所有程序--Python--IDLE(PythonGUI)。
㈡ Python怎样使用解释器
大学里计算机科学最吸引我的地方就是编译器。最神奇的是,编译器是如何读出我写的那些烂代码,并且还能生成那么复杂的程序。当我终于选了一门编译方面的课程时,我发现这个过程比我想的要简单得多。
在本系列的文章中,我会试着通过为一种基本命令语言IMP写一个解释器,来展示这种简易性。因为IMP是一个简单广为人知的语言,所以打算用 Python写这个解释器。Python代码看起来很像伪代码,所以即使你不认识 Python,你也能理解它。解析可以通过一套从头开始实现的解析器组合完成(在本系列的下一篇文章中会有解释)。除了sys(用于I/O)、re(用于解析正则表达式)以及unittest(用于确保一切工作正常)库,没有使用其他额外的库。
IMP 语言
在开始写之前,我们先来讨论一下将要解释的语言。IMP是拥有下面结构的最小命令语言:
赋值语句(所有变量都是全局的,而且只能存储整数):
Python
1
x := 1
条件语句:
Python
1
2
3
4
5
if x = 1 then
y := 2
else
y := 3
end
while循环:
Python
1
2
3
while x < 10 do
x := x + 1
end
复合语句(分号分隔):
Python
1
2
x := 1;
y := 2
OK,所以它只是一门工具语言,但你可以很容易就把它扩展成比Lua或python更有用的语言。我希望能把这份教程能保持尽量简单。
下面这个例子是计算阶乘的程序:
Python
1
2
3
4
5
6
n := 5;
p := 1;
while n > 0 do
p := p * n;
n := n - 1
end
IMP没有读取输入的方式,所以初始状态必须是在程序最开始写一系列的赋值语句。也没有打印结果的方式,所以解释器必须在程序的结尾打印所有变量的值。
解释器的结构
解释器的核心是“中间表示”(Intermediate representation,IR)。这就是如何在内存中表示IMP程序。因为IMP是一个很简单的语言,中间表示将直接对应于语言的语法;每一种表达和语句都有对应的类。在一种更复杂的语言中,你不仅需要一个“语法表示”,还需要一个更容易分析或运行的“语义表示”。
解释器将会执行三个阶段:
将源码中的字符分割成标记符(token)
将标记符组织成一棵抽象语法树(AST)。抽象语法树就是中间表示。
评估这棵抽象语法树,并在最后打印这棵树的状态
将字符串分割成标记符的过程叫做“词法分析”,通过一个词法分析器完成。关键字是很短,易于理解的字符串,包含程序中最基本的部分,如数字、标识符、关键字和操作符。词法分析器会除去空格和注释,因为它们都会被解释器忽略。
实际执行这个解析过的抽象语法树的过程称为评估。这实际上是这个解析器中最简单的部分了。
本文会把重点放在词法分析器上。我们将编写一个通用的词汇库,然后用它来为IMP创建一个词法分析器。下一篇文章将会重点打造一个语法分析器和评估计算器。
词汇库
词法分析器的操作相当简单。它是基于正则表达式的,所以如果你不熟悉它们,你可能需要读一些资料。简单来说,正则表达式就是一种能描述其他字符串的特殊的格式化的字符串。你可以使用它们去匹配电话号码或是邮箱地址,或者是像我们遇到在这种情况,不同类型的标记符。
词法分析器的输入可能只是一个字符串。简单起见,我们将整个输入文件都读到内存中。输出是一个标记符列表。每个标记符包括一个值(它代表的字符串)和一个标记(表示它是一个什么类型的标记符)。语法分析器会使用这两个数据来决定如何构建一棵抽象语法树。
由于不论何种语言的词法分析器,其操作都大同小异,我们将创建一个通用的词法分析器,包括一个正则表达式列表和对应的标签(tag)。对每一个表达式,它都会检查是否和当前位置的输入文本匹配。如果匹配,匹配文本就会作为一个标记符被提取出来,并且被加上该正则表达式的标签。如果该正则表达式没有标签,那么这段文本将会被丢弃。这样免得我们被诸如注释和空格之类的垃圾字符干扰。如果没有匹配的正则表达式,程序就要报错并终止。这个过程会不断循环直到没有字符可匹配。
下面是一段来自词汇库的代码:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import sys
import re
def lex(characters, token_exprs):
pos = 0
tokens = []
while pos < len(characters):
match = None
for token_expr in token_exprs:
pattern, tag = token_expr
regex = re.compile(pattern)
match = regex.match(characters, pos)
if match:
text = match.group(0)
if tag:
token = (text, tag)
tokens.append(token)
break
if not match:
sys.stderr.write('Illegal character: %sn' % characters[pos])
sys.exit(1)
else:
pos = match.end(0)
return tokens
注意,我们遍历正则表达式的顺序很重要。lex会遍历所有的表达式,然后接受第一个匹配成功的表达式。这也就意味着,当使用词法分析器时,我们应当首先考虑最具体的表达式(像那些匹配算子(matching operator)和关键词),其次才是比较一般的表达式(像标识符和数字)。
词法分析器
给定上面的lex函数,为IMP定义一个词法分析器就非常简单了。首先我们要做的就是为标记符定义一系列的标签。IMP只需要三个标签。RESERVED表示一个保留字或操作符。INT表示一个文字整数。ID代表标识符。
Python
1
2
3
4
5
import lexer
RESERVED = 'RESERVED'
INT= 'INT'
ID = 'ID'
接下来定义词法分析器将会用到的标记符表达式。前两个表达式匹配空格和注释。它们没有标签,所以 lex 会丢弃它们匹配到的所有字符。
Python
1
2
3
token_exprs = [
(r'[ nt]+',None),
(r'#[^n]*', None),
然后,只剩下所有的操作符和保留字了。记住,每个正则表达式前面的“r”表示这个字符串是“raw”;Python不会处理任何转义字符。这使我们可以在字符串中包含进反斜线,正则表达式正是利用这一点来转义操作符比如“+”和“*”。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
(r':=', RESERVED),
(r'(',RESERVED),
(r')',RESERVED),
(r';', RESERVED),
(r'+',RESERVED),
(r'-', RESERVED),
(r'*',RESERVED),
(r'/', RESERVED),
(r'<=',RESERVED),
(r'<', RESERVED),
(r'>=',RESERVED),
(r'>', RESERVED),
(r'=', RESERVED),
(r'!=',RESERVED),
(r'and', RESERVED),
(r'or',RESERVED),
(r'not', RESERVED),
(r'if',RESERVED),
(r'then',RESERVED),
(r'else',RESERVED),
(r'while', RESERVED),
(r'do',RESERVED),
(r'end', RESERVED),
最后,轮到整数和标识符的表达式。要注意的是,标识符的正则表达式会匹配上面的所有的保留字,所以它一定要留到最后。
Python
1
2
3
(r'[0-9]+',INT),
(r'[A-Za-z][A-Za-z0-9_]*', ID),
]
既然正则表达式已经定义好了,我们还需要创建一个实际的lexer函数。
Python
1
2
def imp_lex(characters):
return lexer.lex(characters, token_exprs)
如果你对这部分感兴趣,这里有一些驱动代码可以测试输出:
Python
1
2
3
4
5
6
7
8
9
10
11
import sys
from imp_lexer import *
if __name__ == '__main__':
filename = sys.argv[1]
file = open(filename)
characters = file.read()
file.close()
tokens = imp_lex(characters)
for token in tokens:
print token
继续……
在本系列的下一篇文章中,我会讨论解析器组合,然后描述如何使用他们从lexer中生成的标记符列表建立抽象语法树。
如果你对于实现IMP解释器很感兴趣,你可以从这里下载全部的源码。
在源码包含的示例文件中运行解释器:
Python
1
python imp.py hello.imp
运行单元测试:
Python
1
python test.py
㈢ 如何把python解释器内
你用什么系统?python版本?
>windows:
安装完后,在cmd命令行中输python就行了,也就是打开python.exe,弹出命令行窗口,有python简介和“>>>”提示就可调试了。
*注:python3.x版本的print用法是:
print('hello world!')
python 2.x用法:
print 'hello world'
建议windows下装active python调试!
~linux下我没用过
㈣ linux如何重启python解释器
TestCase 测试用例,就是功能里那样一条条用例
TestSuite 多个测试用例集合在一起,就是TestSuite,就是一个功能模块的所有用例放这里了
TestLoader是用来加载TestCase到TestSuite中的,这个方法很好玩,可以将一个目录下的所有python文件里的测试用例抠出来
TestRunner是来执行测试用例的,测试的结果会保存到TestResult实例中,包括运行了多少测试用例,成功了多少,失败了多少等信息
㈤ 怎么启动python解释器
1.首先找到本地python安装位置,若找不到可直接搜索“python”,复制“python.exe”执行文件的所在目录,如下:
注意事项:
python2.x下为:print "Hello World"
python3.x下print需要加“()”:print ("Hello World")
㈥ Python解释器有哪些
python 解释器很多种,最广泛运用的有:
1、CPython
当我们从Python官方网站下载并安装好Python 2.7后,我们就直接获得了一个官方版本的解释器:CPython。这个解释器是用C语言开发的,所以叫CPython。在命令行下运行python就是启动CPython解释器。
CPython是使用最广的Python解释器。教程的所有代码也都在CPython下执行。
2、IPython
IPython是基于CPython之上的一个交互式解释器,也就是说,IPython只是在交互方式上有所增强,但是执行Python代码的功能和CPython是完全一样的。好比很多国产浏览器虽然外观不同,但内核其实都是调用了IE。
CPython用>>>作为提示符,而IPython用In [序号]:作为提示符。
3、PyPy
PyPy是另一个Python解释器,它的目标是执行速度。PyPy采用JIT技术,对Python代码进行动态编译(注意不是解释),所以可以显着提高Python代码的执行速度。
绝大部分Python代码都可以在PyPy下运行,但是PyPy和CPython有一些是不同的,这就导致相同的Python代码在两种解释器下执行可能会有不同的结果。如果你的代码要放到PyPy下执行,就需要了解PyPy和CPython的不同点。
4、Jython
Jython是运行在Java平台上的Python解释器,可以直接把Python代码编译成Java字节码执行。
5、IronPython
IronPython和Jython类似,只不过IronPython是运行在微软.Net平台上的Python解释器,可以直接把Python代码编译成.Net的字节码。
6、qpython用于在手机上编程。
㈦ python的解释器在哪
安装了python环境就有了解释器,解释器其实可以说是python环境。
㈧ 电脑自带python解释器吗,没有解释器的话python程序是怎么运行的呢
windows电脑不自带python,linux自带python。
如果没有python组件的话,python程序无法运行。
㈨ python解释器是什么
大家都知道,Python是一门解释型语言,解释器是Python运行必不可少的一种工具。所以,我们搭建Python环境,本质上就是对Python进行配置和定制。而解释器就是能够执行用其他计算机语言编写的程序的系统软件,它是一种翻译程序。它的执行方式是一边翻译一边执行,因此其执行效率一般偏低,但是解释器的实现较为简单,而且编写源程序的高级语言可以使用更加灵活和富于表现力的语法。
㈩ 什么是python解释器
什么是python解释器?
当我们编写Python代码时,我们得到的是一个包含Python代码的以.py为扩展名的文本文件。要运行代码,就需要Python解释器去执行.py文件。
由于整个Python语言从规范到解释器都是开源的,所以理论上,只要水平够高,任何人都可以编写Python解释器来执行Python代码(当然难度很大)。事实上,确实存在多种Python解释器。
CPython
当我们从Python官方网站下载并安装好Python 2.7后,我们就直接获得了一个官方版本的解释器:CPython。这个解释器是用C语言开发的,所以叫CPython。在命令行下运行python就是启动CPython解释器。
CPython是使用最广的Python解释器。教程的所有代码也都在CPython下执行。
IPython
IPython是基于CPython之上的一个交互式解释器,也就是说,IPython只是在交互方式上有所增强,但是执行Python代码的功能和CPython是完全一样的。好比很多国产浏览器虽然外观不同,但内核其实都是调用了IE。
CPython用>>>作为提示符,而IPython用In [序号]:作为提示符。
PyPy
PyPy是另一个Python解释器,它的目标是执行速度。PyPy采用JIT技术,对Python代码进行动态编译(注意不是解释),所以可以显着提高Python代码的执行速度。
绝大部分Python代码都可以在PyPy下运行,但是PyPy和CPython有一些是不同的,这就导致相同的Python代码在两种解释器下执行可能会有不同的结果。如果你的代码要放到PyPy下执行,就需要了解PyPy和CPython的不同点。
Jython
Jython是运行在Java平台上的Python解释器,可以直接把Python代码编译成Java字节码执行。
IronPython
IronPython和Jython类似,只不过IronPython是运行在微软.Net平台上的Python解释器,可以直接把Python代码编译成.Net的字节码。
小结
Python的解释器很多,但使用最广泛的还是CPython。如果要和Java或.Net平台交互,最好的办法不是用Jython或IronPython,而是通过网络调用来交互,确保各程序之间的独立性。
本教程的所有代码只确保在CPython 2.7版本下运行。请务必在本地安装CPython(也就是从Python官方网站下载的安装程序)。
此外,教程还内嵌一个IPython的Web版本,用来在浏览器内练习执行一些Python代码。要注意两者功能一样,输入的代码一样,但是提示符有所不同。另外,不是所有代码都能在Web版本的IPython中执行,出于安全原因,很多操作(比如文件操作)是受限的,所以有些代码必须在本地环境执行代码。
相关推荐:《Python教程》以上就是小编分享的关于什么是python解释器的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!