当前位置:首页 » 编程语言 » 迭代器python

迭代器python

发布时间: 2022-01-26 08:31:48

1. python 生成器和迭代器的区别

1、迭代器(iterator)是一个实现了迭代器协议的对象,python的一些内置数据类型(列表,数组,字符串,字典等)都可以通过for语句进行迭代,我们也可以自己创建一个容器,实现了迭代器协议,可以通过for,next方法进行迭代,在迭代的末尾,会引发stopIteration异常。
2、生成器(generator)是通过yield语句快速生成迭代器,可以不用iter和next方法
yield可以使一个普通函数变成一个生成器,并且相应的next()方法返回是yield后的值。一种更直观的解释是:程序执行到yield时会返回结果并暂停,再次调用next时会从上次暂停的地方继续开始执行。
显然,生成器自身有构成一个迭代器,每次迭代时使用一个yield返回 的值,一个生成器中可以有多个yield的值

2. python生成器和迭代器的区别

迭代器和生成器都是Python中特有的概念,迭代器可以看作是一个特殊的对象,每次调用该对象时会返回自身的下一个元素,从实现上来看,一个可迭代的对象必须是定义了__iter__()方法的对象,而一个迭代器必须是定义了__iter__()方法和next()方法的对象。生成器的概念要比迭代器稍显复杂,因为生成器是能够返回一个迭代器的函数,其最大的作用是将输入对象返回为一个迭代器。Python中使用了迭代的概念,是因为当需要循环遍历一个较大的对象时,传统的内存载入方式会消耗大量的内存,不如需要时读取一个元素的方式更为经济快捷。
迭代器
迭代器(iterator)是一种对象,它能够用来遍历标准模板库容器中的部分或全部元素,每个迭代器对象代表容器中的确定的地址。迭代器修改了常规指针的接口,所谓迭代器是一种概念上的抽象:那些行为上像迭代器的东西都可以叫做迭代器。然而迭代器有很多不同的能力,它可以把抽象容器和通用算法有机的统一起来。
迭代器提供一些基本操作符:*、++、==、!=、=。这些操作和C/C++“操作array元素”时的指针接口一致。不同之处在于,迭代器是个所谓的复杂的指针,具有遍历复杂数据结构的能力。其下层运行机制取决于其所遍历的数据结构。因此,每一种容器型别都必须提供自己的迭代器。事实上每一种容器都将其迭代器以嵌套的方式定义于内部。因此各种迭代器的接口相同,型号却不同。这直接导出了泛型程序设计的概念:所有操作行为都使用相同接口,虽然它们的型别不同。
迭代器使开发人员能够在类或结构中支持foreach迭代,而不必整个实现IEnumerable或者IEnumerator接口。只需提供一个迭代器,即可遍历类中的数据结构。当编译器检测到迭代器时,将自动生成IEnumerable接口或者IEnumerator接口的Current,MoveNext和Dispose方法。
生成器
生成器是一次生成一个值的特殊类型函数。可以将其视为可恢复函数。调用该函数将返回一个可用于生成连续 x 值的生成器【Generator】
简单的说就是在函数的执行过程中,yield语句会把你需要的值返回给调用生成器的地方,然后退出函数,下一次调用生成器函数的时候又从上次中断的地方开始执行,而生成器内的所有变量参数都会被保存下来供下一次使用。

3. Python中生成器和迭代器的区别

先说迭代器,对于string、list、dict、tuple等这类容器对象,使用for循环遍历是很方便的。在后台for语句对容器对象调用iter()函数,iter()是python的内置函数。iter()会返回一个定义了next()方法的迭代器对象,它在容器中逐个访问容器内元素,next()也是python的内置函数。在没有后续元素时,next()会抛出一个StopIteration异常,通知for语句循环结束。
生成器(Generator)是创建迭代器的简单而强大的工具。它们写起来就像是正规的函数,只是在需要返回数据的时候使用yield语句。每次next()被调用时,生成器会返回它脱离的位置(它记忆语句最后一次执行的位置和所有的数据值)。

4. python迭代器和生成器的区别

这个的区别就是在使用的过程当中啊,它生成的旗舰是不一样的。

5. python中的迭代器有什么用

iamlaosong文
我们在用for
...
in
...语句循环时,in后面跟随的对象要求是可迭代对象,即可以直接作用于for循环的对象统称为可迭代对象(iterable),如list、tuple、dict、set、str等。
可迭代对象是实现了__iter__()方法的对象,而迭代器(iterator)则是实现了__iter__()和__next__()方法的对象,可以显示地获取下一个元素。这种可以被next调用并不断返回下一个值的对象称为迭代器。迭代器一定是可迭代对象,反过来则不一定成立。用iter()函数可以把list、dict、str等iterable变成iterator,例如:
bb=[x
for
x
in
range(10)]
cc=iter(bb)
cc.next()
循环变量的值其实可以看着是一次次用next取值的过程,每取一个值,做一次处理。list等对象用于循环实际上可以看着是用iter()方法产生一个迭代器,然后循环取值。
生成器(generator)就是一个能返回迭代器的函数,其实就是定义一个迭代算法,可以理解为一个特殊的迭代器。调用这个函数就得到一个迭代器,生成器中的yield相当于一个断点,执行到此返回一个值后暂停,从而实现next取值。

6. Python中的迭代器是什么

迭代器

迭代是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。

1.可迭代对象

以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list、tuple、dict、set、str等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

2.判断是否可以迭代

可以使用isinstance()判断一个对象是否是Iterable对象:

运行结果:

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

相关推荐:《Python视频教程》

3.迭代器

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

运行结果:

4.iter()函数

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

把list、dict、str等Iterable变成Iterator可以使用iter()函数:

运行结果:

总结

·凡是可作用于for循环的对象都是Iterable类型;

·凡是可作用于next()函数的对象都是Iterator类型

·集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

·目的是在使用集合的时候,减少占用的内容。

相关推荐:

三分钟看懂什么是Python生成器

7. python迭代器

连复制下问题描述都乱七八糟。。。
1ink?还是link? 这个对象是字典,字典保存的内容,展现给人看的形式就是这种。{key:value}
所以,":"这个符合只是给人看的,让人看着清楚点,并不是字典对象保存的内容,字典要保存的是你存进去的key和value
links[each]和each,前者是通过each,获取字典中,key为each的value.each为键。
后面的问题都是同一个问题。。。
python前面部分,最基础的字典,list,for都没弄清楚。
另外,这个问题和迭代器半毛钱关系都没

8. Python中迭代器(Iterator)

  1. generator都输出生成一个iterator对象,再由iterator遍历出元素。迭代器就是逐个以“下一个”的形式返回元素的函数。

    比如range(10)是生成器,生成一个显示为"range(0,10)"的迭代器对象,可以进一步由for等遍历输出0,1,2,3..10

    又比如对于遍历字典的iter(d)都是生成器函数

  2. 都在不同的层面,无所谓好坏...生成器产生不同的迭代器,迭代器直接产生元素,适合各自情况的就用...

  3. 有必要区分generator生成器函数(对象)和generator expression生成器表达式

    比如:

    range()生成器函数

    for i in range(10)生成器表达式

    [i+1for i in range(10)]对生成器表达式的"列表分解"

另,贴图中由于断章取义,这里的“生成器自身”应该是有特指某个生成器,而不是所有生成器的共性

9. python中的迭代器的理解

9.9. 迭代器
现在你可能注意到大多数容器对象都可以用 for 遍历:
for element in [1, 2, 3]:
print(element)
for element in (1, 2, 3):
print(element)
for key in {'one':1, 'two':2}:
print(key)
for char in "123":
print(char)
for line in open("myfile.txt"):
print(line, end='')
这种形式的访问清晰、简洁、方便。迭代器的用法在 Python 中普遍而且统一。在后台, for 语句在容器对象中调用 iter() 。该函数返回一个定义了 __next__() 方法的迭代器对象,它在容器中逐一访问元素。没有后续的元素时, __next__() 抛出一个 StopIteration 异常通知 for 语句循环结束。你可以是用内建的 next() 函数调用 __next__() 方法;以下是其工作原理的示例:
>>> s = 'abc'
>>> it = iter(s)
>>> it
>>> next(it)
'a'
>>> next(it)
'b'
>>> next(it)
'c'
>>> next(it)
Traceback (most recent call last):
File "
", line 1, in ?
next(it)
StopIteration
了解了迭代器协议的后台机制,就可以很容易的给自己的类添加迭代器行为。定义一个 __iter__() 方法,使其返回一个带有 __next__() 方法的对象。如果这个类已经定义了 __next__() ,那么 __iter__() 只需要返回 self:

热点内容
win7c盘无法访问 发布:2024-11-16 03:41:22 浏览:764
忘记战队密码怎么解散 发布:2024-11-16 03:30:15 浏览:734
jsandroid文件 发布:2024-11-16 03:24:39 浏览:948
在香港怎么买安卓手机 发布:2024-11-16 03:15:37 浏览:762
存储sp 发布:2024-11-16 03:14:08 浏览:849
电视机存储功能 发布:2024-11-16 03:12:50 浏览:869
极品飞车17安卓怎么安装 发布:2024-11-16 03:12:13 浏览:317
长春java 发布:2024-11-16 03:10:47 浏览:577
性价比高的台式电脑怎么配置 发布:2024-11-16 03:04:58 浏览:632
软件测试学python 发布:2024-11-16 02:55:39 浏览:563