当前位置:首页 » 编程语言 » php分表

php分表

发布时间: 2022-12-18 18:46:56

php 数据库设计,用户表数据量大该怎么优化

有很多种方法可以优化:

  1. 数据库设置主从,进行读写分离;

  2. 数据分表,如按月份分表,需要统计数据就查总表;

  3. 优化查询语句,适当增加索引;

  4. 字段优化,对不常用或者没有必要的字段可以考虑放在另外一张表里,避免单表数据过大,字段过多。

② php mysql 分库分表如何查询

我写了一下你看看吧

select t1.*,t2.*,t3.*(我不知道你要什么字段,所以就全部显示了,也可以根据你的需要添加字段)
from a1 t1
, a2 t2
, a3 t3
where t1.user_id = t2.user_id(主键或外键:根据实际表的字段连接)
and t2.user_id = t3.user_id(主键或外键:根据实际表的字段连接)
and t1.name = '张三'
;
上面我只是举个例子,如果你连表的字段信息都不知道,那我也没有办法,本人只会这些。

③ php 百万数据分表后怎么做分页

需要请求时携带页码参数,也就是客户端get或者post请求时携带的页码参数。剩余的功能与做页面时分页一样。如果需要数据库查询的话,limit实现。比如:query($sql);略

④ php 分表分库中间件

用原生php来写,封装一个db类,封装一个table类,通过工厂模式来创建某个库某个表的对象,有了这个对象就可以操作分库分表了;这个中间件可以有自己的命名空间。

⑤ MySQL按月分表PHP如何做汇总统计查询排序分页

1、UNION
2、若是innodb分表,则可以用merge处理。
直接搞一张专门针对统计数据用的汇总表
如果可能的话,不要采用分表的设计,采用表分区,这样就对于查询就不需要特殊处理了。规划好索引,性能应该不会有问题。

⑥ Python/PHP MySQL语句解析器解决业务分表

自己曾经做过一个网盘项目。刚开始由于需要快速地从0到1建设上线,所以没有对核心文档表进行分表。当然我的架构理念也是“按需架构设计”。产品需求在没有明确的长远计划的情况下以“小步快跑,赶超竞品”为主。后期由于产品功能触达目标用户群需求点、产品用户体验不断提升、产品多方位导流、加强产品推广文档表每天有百万数据增长量。不得不对文档表进行按用户id分表。当时产品功能已全覆盖文档的生命周期。产品功能已丰富多彩。修改所有关联文档表的业务代码为按用户id分表开发测试成本非常高。上线后线上问题不可控。经过考虑在业务代码最底层DB层进行SQL语句解析来进行用户id分表处理。这样的话开发测试成本都非常低。上线后有问题方便回滚和追查原因。

今天为大家介绍Python/PHP两种MySQL语句解析器。当时网盘项目用的是PHP编程语言开发。

Python的SQL语句解析器 。个人推荐使用moz_sql_parser库。经调研官方的sqlparse库解析出来的语句段无法满足需求也很难理解。

1、Python moz_sql_parser库安装

2、Python moz_sql_parser SQL语句解析

3、Python moz_sql_parser总结

PHP的SQL语句解析器。 个人推荐使用PhpMyAdmin的sql-parser组件。PhpMyAdmin是经过 历史 检验可信赖的。

1、PHP PhpMyAdmin/sql-parser安装

2、PHP PhpMyAdmin/sql-parser SQL语句解析

3、PHP PhpMyAdmin/sql-parser总结

大家有什么问题可以发评论沟通。

⑦ 怎么样使用PHP操作mysql数据库分表

给你个简单的演示
$sql="SELECT * FROM `数据表` WHERE `xx = 'xx'";
$pd=mysql_query($sql,$con);
$con是数据库连接配置
select为数据查询,删除用del 添加用insert 修改用update

⑧ php怎么处理高并发

以下内容转载自徐汉彬大牛的博客亿级Web系统搭建——单机到分布式集群

当一个Web系统从日访问量10万逐步增长到1000万,甚至超过1亿的过程中,Web系统承受的压力会越来越大,在这个过程中,我们会遇到很多的问题。为了解决这些性能压力带来问题,我们需要在Web系统架构层面搭建多个层次的缓存机制。在不同的压力阶段,我们会遇到不同的问题,通过搭建不同的服务和架构来解决。

Web负载均衡

Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配“工作任务”,而采用恰当的分配方式,对于保护处于后端的Web服务器来说,非常重要。

负载均衡的策略有很多,我们从简单的讲起哈。

1.HTTP重定向

当用户发来请求的时候,Web服务器通过修改HTTP响应头中的Location标记来返回一个新的url,然后浏览器再继续请求这个新url,实际上就是页面重定向。通过重定向,来达到“负载均衡”的目标。例如,我们在下载PHP源码包的时候,点击下载链接时,为了解决不同国家和地域下载速度的问题,它会返回一个离我们近的下载地址。重定向的HTTP返回码是302

这个重定向非常容易实现,并且可以自定义各种策略。但是,它在大规模访问量下,性能不佳。而且,给用户的体验也不好,实际请求发生重定向,增加了网络延时。

2. 反向代理负载均衡

反向代理服务的核心工作主要是转发HTTP请求,扮演了浏览器端和后台Web服务器中转的角色。因为它工作在HTTP层(应用层),也就是网络七层结构中的第七层,因此也被称为“七层负载均衡”。可以做反向代理的软件很多,比较常见的一种是Nginx。

Nginx是一种非常灵活的反向代理软件,可以自由定制化转发策略,分配服务器流量的权重等。反向代理中,常见的一个问题,就是Web服务器存储的session数据,因为一般负载均衡的策略都是随机分配请求的。同一个登录用户的请求,无法保证一定分配到相同的Web机器上,会导致无法找到session的问题。

解决方案主要有两种:

1.配置反向代理的转发规则,让同一个用户的请求一定落到同一台机器上(通过分析cookie),复杂的转发规则将会消耗更多的CPU,也增加了代理服务器的负担。

2.将session这类的信息,专门用某个独立服务来存储,例如redis/memchache,这个方案是比较推荐的。

反向代理服务,也是可以开启缓存的,如果开启了,会增加反向代理的负担,需要谨慎使用。这种负载均衡策略实现和部署非常简单,而且性能表现也比较好。但是,它有“单点故障”的问题,如果挂了,会带来很多的麻烦。而且,到了后期Web服务器继续增加,它本身可能成为系统的瓶颈。

3. IP负载均衡

IP负载均衡服务是工作在网络层(修改IP)和传输层(修改端口,第四层),比起工作在应用层(第七层)性能要高出非常多。原理是,他是对IP层的数据包的IP地址和端口信息进行修改,达到负载均衡的目的。这种方式,也被称为“四层负载均衡”。常见的负载均衡方式,是LVS(linux Virtual Server,Linux虚拟服务),通过IPVS(IP Virtual Server,IP虚拟服务)来实现。

在负载均衡服务器收到客户端的IP包的时候,会修改IP包的目标IP地址或端口,然后原封不动地投递到内部网络中,数据包会流入到实际Web服务器。实际服务器处理完成后,又会将数据包投递回给负载均衡服务器,它再修改目标IP地址为用户IP地址,最终回到客户端。

上述的方式叫LVS-NAT,除此之外,还有LVS-RD(直接路由),LVS-TUN(IP隧道),三者之间都属于LVS的方式,但是有一定的区别,篇幅问题,不赘叙。

IP负载均衡的性能要高出Nginx的反向代理很多,它只处理到传输层为止的数据包,并不做进一步的组包,然后直接转发给实际服务器。不过,它的配置和搭建比较复杂。

4. DNS负载均衡

DNS(Domain Name System)负责域名解析的服务,域名url实际上是服务器的别名,实际映射是一个IP地址,解析过程,就是DNS完成域名到IP的映射。而一个域名是可以配置成对应多个IP的。因此,DNS也就可以作为负载均衡服务。

这种负载均衡策略,配置简单,性能极佳。但是,不能自由定义规则,而且,变更被映射的IP或者机器故障时很麻烦,还存在DNS生效延迟的问题。

5. DNS/GSLB负载均衡

我们常用的CDN(Content Delivery Network,内容分发网络)实现方式,其实就是在同一个域名映射为多IP的基础上更进一步,通过GSLB(Global Server Load Balance,全局负载均衡)按照指定规则映射域名的IP。一般情况下都是按照地理位置,将离用户近的IP返回给用户,减少网络传输中的路由节点之间的跳跃消耗。

“向上寻找”,实际过程是LDNS(Local DNS)先向根域名服务(Root Name Server)获取到顶级根的Name Server(例如.com的),然后得到指定域名的授权DNS,然后再获得实际服务器IP。

CDN在Web系统中,一般情况下是用来解决大小较大的静态资源(html/Js/Css/图片等)的加载问题,让这些比较依赖网络下载的内容,尽可能离用户更近,提升用户体验。

例如,我访问了一张imgcache.gtimg.cn上的图片(腾讯的自建CDN,不使用qq.com域名的原因是防止http请求的时候,带上了多余的cookie信息),我获得的IP是183.60.217.90。

这种方式,和前面的DNS负载均衡一样,不仅性能极佳,而且支持配置多种策略。但是,搭建和维护成本非常高。互联网一线公司,会自建CDN服务,中小型公司一般使用第三方提供的CDN。

Web系统的缓存机制的建立和优化

刚刚我们讲完了Web系统的外部网络环境,现在我们开始关注我们Web系统自身的性能问题。我们的Web站点随着访问量的上升,会遇到很多的挑战,解决这些问题不仅仅是扩容机器这么简单,建立和使用合适的缓存机制才是根本。

最开始,我们的Web系统架构可能是这样的,每个环节,都可能只有1台机器。

我们从最根本的数据存储开始看哈。

一、 MySQL数据库内部缓存使用

MySQL的缓存机制,就从先从MySQL内部开始,下面的内容将以最常见的InnoDB存储引擎为主。

1. 建立恰当的索引

最简单的是建立索引,索引在表数据比较大的时候,起到快速检索数据的作用,但是成本也是有的。首先,占用了一定的磁盘空间,其中组合索引最突出,使用需要谨慎,它产生的索引甚至会比源数据更大。其次,建立索引之后的数据insert/update/delete等操作,因为需要更新原来的索引,耗时会增加。当然,实际上我们的系统从总体来说,是以select查询操作居多,因此,索引的使用仍然对系统性能有大幅提升的作用。

2. 数据库连接线程池缓存

如果,每一个数据库操作请求都需要创建和销毁连接的话,对数据库来说,无疑也是一种巨大的开销。为了减少这类型的开销,可以在MySQL中配置thread_cache_size来表示保留多少线程用于复用。线程不够的时候,再创建,空闲过多的时候,则销毁。

其实,还有更为激进一点的做法,使用pconnect(数据库长连接),线程一旦创建在很长时间内都保持着。但是,在访问量比较大,机器比较多的情况下,这种用法很可能会导致“数据库连接数耗尽”,因为建立连接并不回收,最终达到数据库的max_connections(最大连接数)。因此,长连接的用法通常需要在CGI和MySQL之间实现一个“连接池”服务,控制CGI机器“盲目”创建连接数。

建立数据库连接池服务,有很多实现的方式,PHP的话,我推荐使用swoole(PHP的一个网络通讯拓展)来实现。

3. Innodb缓存设置(innodb_buffer_pool_size)

innodb_buffer_pool_size这是个用来保存索引和数据的内存缓存区,如果机器是MySQL独占的机器,一般推荐为机器物理内存的80%。在取表数据的场景中,它可以减少磁盘IO。一般来说,这个值设置越大,cache命中率会越高。

4. 分库/分表/分区。

MySQL数据库表一般承受数据量在百万级别,再往上增长,各项性能将会出现大幅度下降,因此,当我们预见数据量会超过这个量级的时候,建议进行分库/分表/分区等操作。最好的做法,是服务在搭建之初就设计为分库分表的存储模式,从根本上杜绝中后期的风险。不过,会牺牲一些便利性,例如列表式的查询,同时,也增加了维护的复杂度。不过,到了数据量千万级别或者以上的时候,我们会发现,它们都是值得的。

二、 MySQL数据库多台服务搭建

1台MySQL机器,实际上是高风险的单点,因为如果它挂了,我们Web服务就不可用了。而且,随着Web系统访问量继续增加,终于有一天,我们发现1台MySQL服务器无法支撑下去,我们开始需要使用更多的MySQL机器。当引入多台MySQL机器的时候,很多新的问题又将产生。

1. 建立MySQL主从,从库作为备份

这种做法纯粹为了解决“单点故障”的问题,在主库出故障的时候,切换到从库。不过,这种做法实际上有点浪费资源,因为从库实际上被闲着了。

2. MySQL读写分离,主库写,从库读。

两台数据库做读写分离,主库负责写入类的操作,从库负责读的操作。并且,如果主库发生故障,仍然不影响读的操作,同时也可以将全部读写都临时切换到从库中(需要注意流量,可能会因为流量过大,把从库也拖垮)。

3. 主主互备。

两台MySQL之间互为彼此的从库,同时又是主库。这种方案,既做到了访问量的压力分流,同时也解决了“单点故障”问题。任何一台故障,都还有另外一套可供使用的服务。

不过,这种方案,只能用在两台机器的场景。如果业务拓展还是很快的话,可以选择将业务分离,建立多个主主互备。

三、 MySQL数据库机器之间的数据同步

每当我们解决一个问题,新的问题必然诞生在旧的解决方案上。当我们有多台MySQL,在业务高峰期,很可能出现两个库之间的数据有延迟的场景。并且,网络和机器负载等,也会影响数据同步的延迟。我们曾经遇到过,在日访问量接近1亿的特殊场景下,出现,从库数据需要很多天才能同步追上主库的数据。这种场景下,从库基本失去效用了。

于是,解决同步问题,就是我们下一步需要关注的点。

1. MySQL自带多线程同步

MySQL5.6开始支持主库和从库数据同步,走多线程。但是,限制也是比较明显的,只能以库为单位。MySQL数据同步是通过binlog日志,主库写入到binlog日志的操作,是具有顺序的,尤其当SQL操作中含有对于表结构的修改等操作,对于后续的SQL语句操作是有影响的。因此,从库同步数据,必须走单进程。

2. 自己实现解析binlog,多线程写入。

以数据库的表为单位,解析binlog多张表同时做数据同步。这样做的话,的确能够加快数据同步的效率,但是,如果表和表之间存在结构关系或者数据依赖的话,则同样存在写入顺序的问题。这种方式,可用于一些比较稳定并且相对独立的数据表。

国内一线互联网公司,大部分都是通过这种方式,来加快数据同步效率。还有更为激进的做法,是直接解析binlog,忽略以表为单位,直接写入。但是这种做法,实现复杂,使用范围就更受到限制,只能用于一些场景特殊的数据库中(没有表结构变更,表和表之间没有数据依赖等特殊表)。

四、 在Web服务器和数据库之间建立缓存

实际上,解决大访问量的问题,不能仅仅着眼于数据库层面。根据“二八定律”,80%的请求只关注在20%的热点数据上。因此,我们应该建立Web服务器和数据库之间的缓存机制。这种机制,可以用磁盘作为缓存,也可以用内存缓存的方式。通过它们,将大部分的热点数据查询,阻挡在数据库之前。

1. 页面静态化

用户访问网站的某个页面,页面上的大部分内容在很长一段时间内,可能都是没有变化的。例如一篇新闻报道,一旦发布几乎是不会修改内容的。这样的话,通过CGI生成的静态html页面缓存到Web服务器的磁盘本地。除了第一次,是通过动态CGI查询数据库获取之外,之后都直接将本地磁盘文件返回给用户。

在Web系统规模比较小的时候,这种做法看似完美。但是,一旦Web系统规模变大,例如当我有100台的Web服务器的时候。那样这些磁盘文件,将会有100份,这个是资源浪费,也不好维护。这个时候有人会想,可以集中一台服务器存起来,呵呵,不如看看下面一种缓存方式吧,它就是这样做的。

2. 单台内存缓存

通过页面静态化的例子中,我们可以知道将“缓存”搭建在Web机器本机是不好维护的,会带来更多问题(实际上,通过PHP的apc拓展,可通过Key/value操作Web服务器的本机内存)。因此,我们选择搭建的内存缓存服务,也必须是一个独立的服务。

内存缓存的选择,主要有redis/memcache。从性能上说,两者差别不大,从功能丰富程度上说,Redis更胜一筹。

3. 内存缓存集群

当我们搭建单台内存缓存完毕,我们又会面临单点故障的问题,因此,我们必须将它变成一个集群。简单的做法,是给他增加一个slave作为备份机器。但是,如果请求量真的很多,我们发现cache命中率不高,需要更多的机器内存呢?因此,我们更建议将它配置成一个集群。例如,类似redis cluster。

Redis cluster集群内的Redis互为多组主从,同时每个节点都可以接受请求,在拓展集群的时候比较方便。客户端可以向任意一个节点发送请求,如果是它的“负责”的内容,则直接返回内容。否则,查找实际负责Redis节点,然后将地址告知客户端,客户端重新请求。

对于使用缓存服务的客户端来说,这一切是透明的。

内存缓存服务在切换的时候,是有一定风险的。从A集群切换到B集群的过程中,必须保证B集群提前做好“预热”(B集群的内存中的热点数据,应该尽量与A集群相同,否则,切换的一瞬间大量请求内容,在B集群的内存缓存中查找不到,流量直接冲击后端的数据库服务,很可能导致数据库宕机)。

4. 减少数据库“写”

上面的机制,都实现减少数据库的“读”的操作,但是,写的操作也是一个大的压力。写的操作,虽然无法减少,但是可以通过合并请求,来起到减轻压力的效果。这个时候,我们就需要在内存缓存集群和数据库集群之间,建立一个修改同步机制。

先将修改请求生效在cache中,让外界查询显示正常,然后将这些sql修改放入到一个队列中存储起来,队列满或者每隔一段时间,合并为一个请求到数据库中更新数据库。

除了上述通过改变系统架构的方式提升写的性能外,MySQL本身也可以通过配置参数innodb_flush_log_at_trx_commit来调整写入磁盘的策略。如果机器成本允许,从硬件层面解决问题,可以选择老一点的RAID(Rendant Arrays of independent Disks,磁盘列阵)或者比较新的SSD(Solid State Drives,固态硬盘)。

5. NoSQL存储

不管数据库的读还是写,当流量再进一步上涨,终会达到“人力有穷时”的场景。继续加机器的成本比较高,并且不一定可以真正解决问题的时候。这个时候,部分核心数据,就可以考虑使用NoSQL的数据库。NoSQL存储,大部分都是采用key-value的方式,这里比较推荐使用上面介绍过Redis,Redis本身是一个内存cache,同时也可以当做一个存储来使用,让它直接将数据落地到磁盘。

这样的话,我们就将数据库中某些被频繁读写的数据,分离出来,放在我们新搭建的Redis存储集群中,又进一步减轻原来MySQL数据库的压力,同时因为Redis本身是个内存级别的Cache,读写的性能都会大幅度提升。

国内一线互联网公司,架构上采用的解决方案很多是类似于上述方案,不过,使用的cache服务却不一定是Redis,他们会有更丰富的其他选择,甚至根据自身业务特点开发出自己的NoSQL服务。

6. 空节点查询问题

当我们搭建完前面所说的全部服务,认为Web系统已经很强的时候。我们还是那句话,新的问题还是会来的。空节点查询,是指那些数据库中根本不存在的数据请求。例如,我请求查询一个不存在人员信息,系统会从各级缓存逐级查找,最后查到到数据库本身,然后才得出查找不到的结论,返回给前端。因为各级cache对它无效,这个请求是非常消耗系统资源的,而如果大量的空节点查询,是可以冲击到系统服务的。

在我曾经的工作经历中,曾深受其害。因此,为了维护Web系统的稳定性,设计适当的空节点过滤机制,非常有必要。

我们当时采用的方式,就是设计一张简单的记录映射表。将存在的记录存储起来,放入到一台内存cache中,这样的话,如果还有空节点查询,则在缓存这一层就被阻挡了。

异地部署(地理分布式)

完成了上述架构建设之后,我们的系统是否就已经足够强大了呢?答案当然是否定的哈,优化是无极限的。Web系统虽然表面上看,似乎比较强大了,但是给予用户的体验却不一定是最好的。因为东北的同学,访问深圳的一个网站服务,他还是会感到一些网络距离上的慢。这个时候,我们就需要做异地部署,让Web系统离用户更近。

一、 核心集中与节点分散

有玩过大型网游的同学都会知道,网游是有很多个区的,一般都是按照地域来分,例如广东专区,北京专区。如果一个在广东的玩家,去北京专区玩,那么他会感觉明显比在广东专区卡。实际上,这些大区的名称就已经说明了,它的服务器所在地,所以,广东的玩家去连接地处北京的服务器,网络当然会比较慢。

当一个系统和服务足够大的时候,就必须开始考虑异地部署的问题了。让你的服务,尽可能离用户更近。我们前面已经提到了Web的静态资源,可以存放在CDN上,然后通过DNS/GSLB的方式,让静态资源的分散“全国各地”。但是,CDN只解决的静态资源的问题,没有解决后端庞大的系统服务还只集中在某个固定城市的问题。

这个时候,异地部署就开始了。异地部署一般遵循:核心集中,节点分散。

·核心集中:实际部署过程中,总有一部分的数据和服务存在不可部署多套,或者部署多套成本巨大。而对于这些服务和数据,就仍然维持一套,而部署地点选择一个地域比较中心的地方,通过网络内部专线来和各个节点通讯。

·节点分散:将一些服务部署为多套,分布在各个城市节点,让用户请求尽可能选择近的节点访问服务。

例如,我们选择在上海部署为核心节点,北京,深圳,武汉,上海为分散节点(上海自己本身也是一个分散节点)。我们的服务架构如图:

需要补充一下的是,上图中上海节点和核心节点是同处于一个机房的,其他分散节点各自独立机房。
国内有很多大型网游,都是大致遵循上述架构。它们会把数据量不大的用户核心账号等放在核心节点,而大部分的网游数据,例如装备、任务等数据和服务放在地区节点里。当然,核心节点和地域节点之间,也有缓存机制。

二、 节点容灾和过载保护

节点容灾是指,某个节点如果发生故障时,我们需要建立一个机制去保证服务仍然可用。毫无疑问,这里比较常见的容灾方式,是切换到附近城市节点。假如系统的天津节点发生故障,那么我们就将网络流量切换到附近的北京节点上。考虑到负载均衡,可能需要同时将流量切换到附近的几个地域节点。另一方面,核心节点自身也是需要自己做好容灾和备份的,核心节点一旦故障,就会影响全国服务。

过载保护,指的是一个节点已经达到最大容量,无法继续接接受更多请求了,系统必须有一个保护的机制。一个服务已经满负载,还继续接受新的请求,结果很可能就是宕机,影响整个节点的服务,为了至少保障大部分用户的正常使用,过载保护是必要的。

解决过载保护,一般2个方向:

·拒绝服务,检测到满负载之后,就不再接受新的连接请求。例如网游登入中的排队。

·分流到其他节点。这种的话,系统实现更为复杂,又涉及到负载均衡的问题。

小结

Web系统会随着访问规模的增长,渐渐地从1台服务器可以满足需求,一直成长为“庞然大物”的大集群。而这个Web系统变大的过程,实际上就是我们解决问题的过程。在不同的阶段,解决不同的问题,而新的问题又诞生在旧的解决方案之上。

系统的优化是没有极限的,软件和系统架构也一直在快速发展,新的方案解决了老的问题,同时也带来新的挑战。

⑨ 1亿条数据如何分表100张到Mysql数据库中(PHP)

下面通过创建100张表来演示下1亿条数据的分表过程,具体请看下文代码。
当数据量猛增的时候,大家都会选择库表散列等等方式去优化数据读写速度。笔者做了一个简单的尝试,1亿条数据,分100张表。具体实现过程如下:
首先创建100张表:
$i=0;
while($i<=99){
echo
"$newNumber
\r\n";
$sql="CREATE
TABLE
`code_".$i."`
(
`full_code`
char(10)
NOT
NULL,
`create_time`
int(10)
unsigned
NOT
NULL,
PRIMARY
KEY
(`full_code`),
)
ENGINE=MyISAM
DEFAULT
CHARSET=utf8";
mysql_query($sql);
$i++;
下面说一下我的分表规则,full_code作为主键,我们对full_code做hash
函数如下:
$table_name=get_hash_table('code',$full_code);
function
get_hash_table($table,$code,$s=100){
$hash
=
sprintf("%u",
crc32($code));
echo
$hash;
$hash1
=
intval(fmod($hash,
$s));
return
$table."_".$hash1;
}
这样插入数据前通过get_hash_table获取数据存放的表名。
最后我们使用merge存储引擎来实现一张完整的code表
CREATE
TABLE
IF
NOT
EXISTS
`code`
(
`full_code`
char(10)
NOT
NULL,
`create_time`
int(10)
unsigned
NOT
NULL,
INDEX(full_code)
)
TYPE=MERGE
UNION=(code_0,code_1,code_2.......)
INSERT_METHOD=LAST
;
这样我们通过select
*
from
code就可以得到所有的full_code数据了。
以上介绍就是本文的全部内容,希望对大家有所帮助。

⑩ PHP中高级面试题 – 第三天

一、简述一下MongoDB的应用场景

mongodb 支持副本集、索引、自动分片,可以保证较高的性能和可用性。

更高的写入负载

默认情况下,MongoDB 更侧重高数据写入性能,而非事务安全,MongoDB 很适合业务系统中有大量 “低价值” 数据的场景。但是应当避免在高事务安全性的系统中使用 MongoDB,除非能从架构设计上保证事务安全。

高可用性

MongoDB 的复副集 (Master-Slave) 配置非常简洁方便,此外,MongoDB 可以快速响应的处理单节点故障,自动、安全地完成故障转移。这些特性使得 MongoDB 能在一个相对不稳定(如云主机)的环境中,保持高可用性。

数据量很大或者未来会变得很大

依赖数据库 (MySQL) 自身的特性,完成数据的扩展是较困难的事,在 MySQL 中,当一个单达表到 5-10GB 时会出现明显的性能降级,此时需要通过数据的水平和垂直拆分、库的拆分完成扩展,使用 MySQL 通常需要借助驱动层或代理层完成这类需求。而 MongoDB 内建了多种数据分片的特性,可以很好地适应大数据量的需求。

基于位置的数据查询

MongoDB 支持二维空间索引,因此可以快速及精确地从指定位置获取数据。

表结构不明确

在一些传统 RDBMS 中,增加一个字段会锁住整个数据库 / 表,或者在执行一个重负载的请求时会明显造成其它请求的性能降级。通常发生在数据表大于 1G 的时候(当大于 1TB 时更甚)。 因 MongoDB 是文档型数据库,为非结构货的文档增加一个新字段是很快速的操作,并且不会影响到已有数据。另外一个好处当业务数据发生变化时,是将不再需要由 DBA 修改表结构。

二、数据库设计经验,为什么进行分表?分库?一般多少数据量开始分表?分库?分库分表的目的?

1、为什么要分表

当一张表的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表。这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕。

分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率。数据库中的数据量不一定是可控的,在未进行分库分表的情况下,随着时间和业务的发展,库中的表会越来越多,表中的数据量也会越来越大,相应地,数据操作,增删改查的开销也会越来越大;另外,由于无法进行分布式式部署,而一台服务器的资源(CPU、磁盘、内存、IO 等)是有限的,最终数据库所能承载的数据量、数据处理能力都将遭遇瓶颈。

2、分表的方案

做 mysql 集群,有人会问 mysql 集群,根分表有什么关系吗?虽然它不是实际意义上的分表,但是它启到了分表的作用,做集群的意义是什么呢?为一个数据库减轻负担,说白了就是减少 sql 排队队列中的 sql 的数量,举个例子:有 10 个 sql 请求,如果放在一个数据库服务器的排队队列中,他要等很长时间,如果把这 10 个 sql 请求,分配到 5 个数据库服务器的排队队列中,一个数据库服务器的队列中只有 2 个,这样等待时间是不是大大的缩短了呢?

linux mysql proxy 的安装,配置,以及读写分离

mysql replication 互为主从的安装及配置,以及数据同步

优点:扩展性好,没有多个分表后的复杂操作(php 代码)

缺点:单个表的数据量还是没有变,一次操作所花的时间还是那么多,硬件开销大。

三、简述一下数据库主从复制,读写分离

* 什么是主从复制
主从复制,是用来建立一个和主数据库完全一样的数据库环境,称为从数据库;

* 主从复制的原理:
1.数据库有个bin-log二进制文件,记录了所有的sql语句。
2.只需要把主数据库的bin-log文件中的sql语句复制。
3.让其从数据的relay-log重做日志文件中再执行一次这些sql语句即可。

* 主从复制的作用
1.做数据的热备份,作为后备数据库,主数据库服务器故障后,可切换到从数据库继续工作,避免数据丢失。
2.架构的扩展。业务量越来越大,I/O访问频率过高,单机无法满足,此时做多库的存储,降低磁盘I/O访问频率,提高单机的I/O性能
3.主从复制是读写分离的基础,使数据库能制成更大 的并发。例如子报表中,由于部署报表的sql语句十分慢,导致锁表,影响前台的服务。如果前台服务使用master,报表使用slave,那么报表sql将不会造成前台所,保证了前台的访问速度。

* 主从复制的几种方式:
1.同步复制:所谓的同步复制,意思是master的变化,必须等待slave-1,slave-2,…,slave-n完成后才能返回。
2.异步复制:如同AJAX请求一样。master只需要完成自己的数据库操作即可。至于slaves是否收到二进制日志,是否完成操作,不用关心。MYSQL的默认设置。
3.半同步复制:master只保证slaves中的一个操作成功,就返回,其他slave不管。
这个功能,是由google为MYSQL引入的。

* 关于读写分离
在完成主从复制时,由于slave是需要同步master的。所以对于insert/delete/update这些更新数据库的操作,应该在master中完成。而select的查询操作,则落下到slave中。

热点内容
如何让电脑上拥有移动式服务器 发布:2025-01-27 13:04:46 浏览:67
漫威超级战争如何配置核心组合 发布:2025-01-27 13:03:19 浏览:954
c语言五子棋程序 发布:2025-01-27 12:58:43 浏览:157
win10流媒体服务器怎么搭建 发布:2025-01-27 12:58:04 浏览:384
组合公式的算法 发布:2025-01-27 12:45:50 浏览:278
落樱小屋哪里下载安卓 发布:2025-01-27 12:35:13 浏览:72
微信服务器IP跳转 发布:2025-01-27 12:26:54 浏览:74
oracle自动备份脚本linux 发布:2025-01-27 12:21:40 浏览:937
pop服务器密码怎么填 发布:2025-01-27 12:20:02 浏览:969
oraclesqlnumber 发布:2025-01-27 12:04:22 浏览:850