分类器C语言
① 想往人工智能方向走,c语言基础学扎实后该怎么学习书籍如何选择我是自学,C语言差不多学完了
人工智能入门需要掌握这些知识:
1.基础数学知识:线性代数、概率论、统计学、图论
2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库
3.编程语言基础:C/C++、Python、java
4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容。
5.工具基础知识:opencv、matlab、caffe等
要进入人工智能行业,首先要有一定的数学功底,因为人工智能不同于app开发,网页开发、游戏开发等传统的互联网职位,先看看51cto学院人工智能的课程,会有不少帮助。人工智能是从数学中的“逼近理论”逐步演化而来的,当今人工智能所使用的方法,最开始的时候大部分是数学家为了逼近某些比较难表示的非线性函数而使用的。后来随着计算机性能的提高,计算机工作者,统计学家,开始尝试用这套“逼近理论”解决一些分类问题。逐步发展成为现在的人工智能局面。现在属于人工智能行业发展初期,各种可用的api函数都比较少,所以自己编写算法是必须要会的。
“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
你是自学的,学习这些知识很有必要。
② 分类统计字符 C语言
例:使用while语句循环统计 :
#include<stdio.h>
int main()
{
char c;
int letters_num = 0, space_num = 0, digit_num = 0, other_num = 0;
while ((c = getchar()) != ' ')//输入换行符退出循环
{
if ((c >= 'a'&&c <= 'z') || (c >= 'A'&&c <= 'Z')) letters_num++;
else if (c == ' ') space_num++;
else if (c >= '0'&&c <= '9') digit_num++;
else other_num++;
}
printf("字母=%d,空格=%d,数字=%d,其他=%d", letters_num, space_num, digit_num, other_num);
return 0;
}
运行效果:
(2)分类器C语言扩展阅读:
printf()函数的用法
1、printf()函数的调用格式为:printf("<格式化字符串>",<参量表>);
//__stdcall
int __cdecl printf(const char*p,...);
可变参数
printf在打印浮点数,不论原来是双精度还是单精度,都变为双精度(8字节)
打印1字节(char)2字节(short)4字节(int)==>4字节,除了long long(8字节)
void main()
{
③ c语言编程实现 基于最小错误率的贝叶斯决策
贝叶斯决策理论(Bayesian Decision Theory)
贝叶斯决策理论概述
贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。
贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。
贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:
★已知类条件概率密度参数表达式和先验概率
★利用贝叶斯公式转换成后验概率
★根据后验概率大小进行决策分类
贝叶斯公式
设D1,D2,……,Dn为样本空间S的一个划分,如果以P(Di)表示事件Di发生的概率,且P(Di)>0(i=1,2,…,n)。对于任一事件x,P(x)>0,如图
贝叶斯决策理论分析
(1)如果我们已知被分类类别概率分布的形式和已经标记类别的训练样本集合,那我们就需要从训练样本集合中来估计概率分布的参数。在现实世界中有时会出现这种情况。(如已知为正态分布了,根据标记好类别的样本来估计参数,常见的是极大似然率和贝叶斯参数估计方法)
(2)如果我们不知道任何有关被分类类别概率分布的知识,已知已经标记类别的训练样本集合和判别式函数的形式,那我们就需要从训练样本集合中来估计判别式函数的参数。在现实世界中有时会出现这种情况。(如已知判别式函数为线性或二次的,那么就要根据训练样本来估计判别式的参数,常见的是线性判别式和神经网络)
(3)如果我们既不知道任何有关被分类类别概率分布的知识,也不知道判别式函数的形式,只有已经标记类别的训练样本集合。那我们就需要从训练样本集合中来估计概率分布函数的参数。在现实世界中经常出现这种情况。(如首先要估计是什么分布,再估计参数。常见的是非参数估计)
(4)只有没有标记类别的训练样本集合。这是经常发生的情形。我们需要对训练样本集合进行聚类,从而估计它们概率分布的参数。(这是无监督的学习)
(5)如果我们已知被分类类别的概率分布,那么,我们不需要训练样本集合,利用贝叶斯决策理论就可以设计最优分类器。但是,在现实世界中从没有出现过这种情况。这里是贝叶斯决策理论常用的地方。
问题:假设我们将根据特征矢量x 提供的证据来分类某个物体,那么我们进行分类的标准是什么?decide wj, if(p(wj|x)>p(wi|x))(i不等于j)应用贝叶斯展开后可以得到p(x|wj)p(wj)>p(x|wi)p(wi)即或然率p(x|wj)/p(x|wi)>p(wi)/p(wj),决策规则就是似然率测试规则。
结论:
对于任何给定问题,可以通过似然率测试决策规则得到最小的错误概率。这个错误概率称为贝叶斯错误率,且是所有分类器中可以得到的最好结果。最小化错误概率的决策规则就是最大化后验概率判据。
贝叶斯决策判据
贝叶斯决策理论方法是统计模式识别中的一个基本方法。贝叶斯决策判据既考虑了各类参考总体出现的概率大小,又考虑了因误判造成的损失大小,判别能力强。贝叶斯方法更适用于下列场合:
(1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。
(2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进行分类时要求两点:
第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。
第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。
对于两类故障诊断问题,就相当于在识别前已知正常状态D1的概率户(D1)和异常状态0:的概率P(D2),它们是由先验知识确定的状态先验概率。如果不做进一步的仔细观测,仅依靠先验概率去作决策,那么就应给出下列的决策规则:若P(D1)>P(D2),则做出状态属于D1类的决策;反之,则做出状态属于D2类的决策。例如,某设备在365天中,有故障是少见的,无故障是经常的,有故障的概率远小于无故障的概率。因此,若无特B,j明显的异常状况,就应判断为无故障。显然,这样做对某一实际的待检状态根本达不到诊断的目的,这是由于只利用先验概率提供的分类信息太少了。为此,我们还要对系统状态进行状态检测,分析所观测到的信息。
④ 用c语言写一个神经网络分类器大概要多少行代码
RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。BP网络就是一个典型的例子。
如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。
⑤ 计算机语言的分类及之间的联系与区别
计算机高级编程语言按其程序的执行方式可以分为两种:编译型,解释型
1.编译型语言是指使用专门的编译器、针对特定平台(操作系统)将某种高级语言源程序一次性“翻译”成可被该平台硬件运行的机器码(包括指令和操作数),并包装成该平台的操作系统所能识别和运行的格式。
这种语言的程序执行时效率高,可以脱离开发环境独立运行,但如果要移植必须修改源程序,或者针对不同的平台采用不同的编译器进行重新编译。现在的多是高级语言,如c,c++,Pascal,LISP等都是编译型的。
2.解释型是指用专门的解释器将某种高级语言源程序逐条解释成特定平台的机器码指令并立即执行,解释一句执行一句,而不进行整体的编译和链接处理。
3.java语言是解释型和编译型的结合,先采用通用的java编译器将java源程序编译成为与平台无关的中间产物,然后利用java虚拟机(JVM:Java Virtual Maching)进行解释执行。
(5)分类器C语言扩展阅读:
汇编语言
为了减轻使用机器语言编程的痛苦,人们进行了一种有益的改进:用一些简洁的英文字母、符号串来替代一个特定的指令的二进制串,
比如,用"ADD"代表加法,"MOV"代表数据传递等等,这样一来,人们很容易读懂并理解程序在干什么,纠错及维护都变得方便了,这种程序设计语言就称为汇编语言,即第二代计算机语言。
然而计算机是不认识这些符号的,这就需要一个专门的程序,专门负责将这些符号翻译成二进制数的机器语言,这种翻译程序被称为汇编程序。
汇编语言同样十分依赖于机器硬件,移植性不好,但效率仍十分高,针对计算机特定硬件而编制的汇编语言程序,能准确发挥计算机硬件的功能和特长,程序精炼而质量高,所以至今仍是一种常用而强有力的软件开发工具。
汇编语言的实质和机器语言是相同的,都是直接对硬件操作,只不过指令采用了英文缩写的标识符,更容易识别和记忆。它同样需要编程者将每一步具体的操作用命令的形式写出来。
⑥ C语言有分类别吗
有,程序设计会用到C语言,电子工程也会用到C语言。。。
就程序设计而言,主要是针对软件开发的,比如LINUX操作系统内核就是用它编写的,此外好多游戏等应用软件也使用它写。。。
不过最近几年在电子工程方面,也有用C语言代替汇编语言写程序的,大多是汇编语言与C语言混合编写,因为C语言比编程语言简单,C语言是最接近硬件的高级语言,而汇编是低级语言,不好掌握。。。
不知道你是那一方面的专业,除这俩方面,还有很多地方会用到C语言的,因为
语言是最古老也是最有魅力的语言,好好掌握吧!!
⑦ 下载的程序的网站 70分
自己上CSDN上面搜索去,里面很全,很广,
⑧ c语言都有哪几种分类
c语言总体有六种基本数据类型,它们分别是:
short int long float double char
在c语言中,数据类型主要分为基本类型,和构造类型,指针,void,其中最常用的就是基本和构造类型,这样说概念可能有点模糊令你们,这样说,基本类型中包括的就是我们熟悉的数值类型和字符类型,数值型是我们最常用到的,尤其是c小白,数值型中包括整型和浮点型,这两个怎么区分呢?
比如321,这个数值它没有小数点,它叫做整型,与之对应的321.000,带小数点的数值被称为浮点型。
但是呢,即使是一个整数或者小数,计算机它也有自己能够容纳的一个数字长度,由此便出现了短整型和长整型,单精度和双精度
短整型:short
长整型:long
单精度:float
双精度:double
其中:
short 占据的内存大小是2 个byte;
int占据的内存大小是4 个byte;
long占据的内存大小是4 个byte;
float占据的内存大小是4 个byte;
double占据的内存大小是8 个byte;
char占据的内存大小是1 个byte。
命名规则:
1、尽量使用英语对变量进行证明,比如当命名总和时,可以用sum
2、命名时尽量和自己的喜好结合,在后期你可能会回来翻你之前的程序,试想一下,自己这起的啥名都不知道代表啥,加上没有注释,那简直看起来就是别人家的代码
3、命名时避开系统已经使用的单词,比如int double class等
4、当命名为多个单词时,尽量使每个单词的开头第一个字母为大写,虽然执行起来比较复杂,但是对美观性和可读性非常棒
5、当命名循环变量时,一般使用i j k,命名一般变量时,一般使用n m ,一般命名字符类型的变量时使用c ch
⑨ 简述c语言中的分类及每类特点
C 语言特点
1.C语言是一种成功的系统描述语言,用C语言开发的UNIX操作系统就是一个成功的范例;
2.同时C语言又是一种通用的程序设计语言,在国际上广泛流行。世界上很多着名的计算公司都成功的开发了不同版本的C语言,很多优秀的应用程序也都使用C语言开发的,它是一种很有发展前途的高级程序设计语言。
3.C是中级语言。它把高级语言的基本结构和语句与低级语言的实用性结合起来。C 语言可以像汇编语言一样对位、字节和地址进行操作, 而这三者是计算机最基本的工作单元。 4.C是结构式语言。结构式语言的显着特点是代码及数据的分隔化,即程序的各个部分除了必要的信息交流外彼此独立。这种结构化方式可使程序层次清晰,便于使用、维护以及调试。C 语言是以函数形式提供给用户的,这些函数可方便的调用,并具有多种循环、条件语句控制程序流向,从而使程序完全结构化。
5.C语言功能齐全。具有各种各样的数据类型,并引入了指针概念,可使程序效率更高。而且计算功能、逻辑判断功能也比较强大,可以实现决策目的的游戏。
6. C语言适用范围大。适合于多种操作系统,如Windows、DOS、UNIX等等;也适用于多种机型。C语言对编写需要硬件进行操作的场合,明显优于其它解释型高级语言,有一些大型应用软件也是用C语言编写的。
7.C语言具有较好的可移植性,并具备很强的数据处理能力,因此适于编写系统软件,三维,二维图形和动画。它是数值计算的高级语言。常用的C语言IDE(集成开发环境)有Microsoft Visual C++,Dev-C++,Code::Blocks,Borland C++,Watcom C++,Borland C++ Builder,GNU DJGPP C++,Lccwin32 C Compiler 3.1,High C,Turbo C,C-Free,win-tc 等等…… c语言的学习 对于一个初学者,Microsoft Visual C++是一个比较好的软件。界面友好,功能强大,调试也很方便。这是微软出的一个C语言集成开发环境(IDE),主要有:VC++6.0、VS2005、VS2008、VS2010等,分为企业版和学生版等。对于初学者VC++6.0是比较容易上手的,但由于其对标准支持的不好可能使人养成不良编程习惯,因此论坛上也有人主张舍弃VC++6.0。 在unix/linux操作系统上,学习c语言一般使用vim/emacx来编辑源文件,使用gcc/cc来编译源文件,使用make程序来管理编译过程。
编辑本段发展历史
c语言
C语言的祖先是BCPL语言。 1967年,剑桥大学的Martin Richards 对CPL语言进行了简化,于是产生了BCPL(Basic Combined Pogramming Language)语言。 1970年,美国贝尔实验室的Ken Thompson。以BCPL语言为基础,设计出很简单且很接近硬件的B语言(取BCPL的首字母)。并且他用B语言写了第一个UNIX操作系统。 在1972年,美国贝尔实验室的D.M.Ritchie在B语言的基础上最终设计出了一种新的语言,他取了BCPL的第二个字母作为这种语言的名字,这就是C语言。 为了使UNIX操作系统推广,1977年Dennis M.Ritchie 发表了不依赖于具体机器系统的C语言编译文本《可移植的C语言编译程序》。 1978年由美国电话电报公司(AT&T)贝尔实验室正式发表了C语言。同时由B.W.Kernighan和D.M.Ritchie合着 c语言程序设计
了着名的《The C Programming Language》一书。通常简称为《K&R》,也有人称之为《K&R》标准。但是,在《K&R》中并没有定义一个完整的标准C语言,后来由美国国家标准化协会(American National Standards Institute)在此基础上制定了一个C语言标准,于一九八三年发表。通常称之为ANSI C。 K&R第一版在很多语言细节上也不够精确,对于pcc这个“参照编译器”来说,它日益显得不切实际;K&R甚至没有很好表达它所要描述的语言,把后续扩展扔到了一边。最后,C在早期项目中的使用受商业和政府合同支配,它意味着一个认可的正式标准是重要的。因此(在M. D. McIlroy的催促下),ANSI于1983年夏天,在CBEMA的领导下建立了X3J11委员会,目的是产生一个C标准。X3J11在1989年末提出了一个他们的报告[ANSI 89],后来这个标准被ISO接受为ISO/IEC 9899-1990。 1990年,国际标准化组织ISO(International Organization for Standards)接受了89 ANSI C 为I SO C 的标准(ISO9899-1990)。1994年,ISO修订了C语言的标准。 1995年,ISO对C90做了一些修订,即“1995基准增补1(ISO/IEC/9899/AMD1:1995)”。1999年,ISO有对C语言标准进行修订,在基本保留原来C语言特征的基础上,针对应该的需要,增加了一些功能,尤其是对C++中的一些功能,命名为ISO/IEC9899:1999。 2001年和2004年先后进行了两次技术修正。 目前流行的C语言编译系统大多是以ANSI C为基础进行开发的,但不同版本的C编译系统所实现的语言功能和语法规则有略有差别