python画棋盘
① python 给定一个棋盘,每次只能向右或向下走,从左下角走到右下角,有多少种走法
左下到右下只能横着走了。算一种走法
② 怎么用python编辑棋盘密码
需要进行软件在软件里面调整一下具体的输入,然后完成棋盘表格代码的填写,就可以修改密码。
③ 我想用python做一个飞行棋的游戏,用graphics作界面,然后我要把一张飞行棋的棋盘的图片做背景,要怎么办
建议你用pygame,封装好了很多功能。就不用重写了。
④ 在线等!求一个python 五子棋源代码,最好是有“人人对弈”和“人机对弈”功能的,不胜感谢!
试试这个吧。
import numpy as np
import pygame
import sys
import traceback
import
from pygame.locals import *
pygame.init()
pygame.mixer.init()
#颜色
background=(201,202,187)
checkerboard=(80,80,80)
button=(52,53,44)
#音乐
play_chess_sound = pygame.mixer.Sound("music/play_chess.wav")
play_chess_sound.set_volume(0.2)
button_sound = pygame.mixer.Sound("music/button.wav")
button_sound.set_volume(0.2)
victor_sound = pygame.mixer.Sound("music/victory.wav")
victor_sound.set_volume(0.2)
#绘制棋盘
def Draw_a_chessboard(screen):
#填充背景色
screen.fill(background)
Background=pygame.image.load("background.jpg").convert_alpha()
screen.blit(Background,(0,0))
#画棋盘
for i in range(21):
pygame.draw.line(screen, checkerboard, (40*i+3, 3), (40*i+3, 803))
pygame.draw.line(screen, checkerboard, (3, 40*i+3), (803, 40*i+3))
#画边线
pygame.draw.line(screen, checkerboard, (3, 3), (803, 3),5)
pygame.draw.line(screen, checkerboard, (3, 3), (3, 803),5)
pygame.draw.line(screen, checkerboard, (803, 3), (803, 803),5)
pygame.draw.line(screen, checkerboard, (3, 803), (803, 803),5)
#画定位点
pygame.draw.circle(screen, checkerboard, (163, 163), 6)
pygame.draw.circle(screen, checkerboard, (163, 643), 6)
pygame.draw.circle(screen, checkerboard, (643, 163), 6)
pygame.draw.circle(screen, checkerboard, (643, 643), 6)
pygame.draw.circle(screen, checkerboard, (403, 403), 6)
#画‘悔棋’‘重新开始’跟‘退出’按钮
pygame.draw.rect(screen,button,[900,350,120,100],5)
pygame.draw.rect(screen,button,[900,500,200,100],5)
pygame.draw.rect(screen,button,[900,650,200,100],5)
s_font=pygame.font.Font('font.ttf',40)
text1=s_font.render("悔棋",True,button)
text2=s_font.render("重新开始",True,button)
text3=s_font.render("退出游戏",True,button)
screen.blit(text1,(920,370))
screen.blit(text2,(920,520))
screen.blit(text3,(920,670))
#绘制棋子(横坐标,纵坐标,屏幕,棋子颜色(1代表黑,2代表白))
def Draw_a_chessman(x,y,screen,color):
if color==1:
Black_chess=pygame.image.load("Black_chess.png").convert_alpha()
screen.blit(Black_chess,(40*x+3-15,40*y+3-15))
if color==2:
White_chess=pygame.image.load("White_chess.png").convert_alpha()
screen.blit(White_chess,(40*x+3-15,40*y+3-15))
#绘制带有棋子的棋盘
def Draw_a_chessboard_with_chessman(map,screen):
screen.fill(background)
Draw_a_chessboard(screen)
for i in range(24):
for j in range(24):
Draw_a_chessman(i+1,j+1,screen,map[i][j])
#定义存储棋盘的列表,
#列表为24列24行是因为判断是否胜利函数里的索引会超出19
#列表大一点不会对游戏有什么影响
map=[]
for i in range(24):
map.append([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
#清零map列表
def clear():
global map
for i in range(24):
for j in range(24):
map[i][j]=0
#判断是否胜利
def win(i, j):
k = map[i][j]
p=[]
for a in range(20):
p.append(0)
for i3 in range(i-4,i+5):
for j3 in range(j-4,j+5):
if (map[i3][j3] == k and i3 - i == j3 - j and i3 <= i and j3 <= j):
p[0]+=1
if (map[i3][j3] == k and j3 == j and i3 <= i and j3 <= j):
p[1]+=1
if (map[i3][j3] == k and i3 == i and i3 <= i and j3 <= j):
p[2]+=1
if (map[i3][j3] == k and i3 - i == j3 - j and i3 >= i and j3 >= j):
p[3]+=1
if (map[i3][j3] == k and j3 == j and i3 >= i and j3 >= j):
p[4]+=1
if (map[i3][j3] == k and i3 == i and i3 >= i and j3 >= j):
p[5]+=1
if (map[i3][j3] == k and i - i3 == j3 - j and i3 <= i and j3 >= j):
p[6]+=1
if (map[i3][j3] == k and i3 - i == j - j3 and i3 >= i and j3 <= j):
p[7]+=1
if (map[i3][j3] == k and j - j3 == i - i3 and i3 <= i + 1 and i3 >= i - 3 and j3 <= j + 1 and j3 >= j - 3):
p[8]+=1
if (map[i3][j3] == k and j == j3 and i3 <= i + 1 and i3 >= i - 3 and j3 <= j + 1 and j3 >= j - 3):
p[9]+=1
if (map[i3][j3] == k and i == i3 and i3 <= i + 1 and i3 >= i - 3 and j3 <= j + 1 and j3 >= j - 3):
p[10]+=1
if (map[i3][j3] == k and j - j3 == i - i3 and i3 >= i - 1 and i3 <= i + 3 and j3 >= j - 1 and j3 <= j + 3):
p[11]+=1
if (map[i3][j3] == k and j == j3 and i3 >= i - 1 and i3 <= i + 3 and j3 >= j - 1 and j3 <= j + 3):
p[12]+=1
if (map[i3][j3] == k and i == i3 and i3 >= i - 1 and i3 <= i + 3 and j3 >= j - 1 and j3 <= j + 3):
p[13]+=1
if (map[i3][j3] == k and i - i3 == j3 - j and i3 <= i + 1 and i3 >= i - 3 and j3 >= j - 1 and j3 <= j + 3):
p[14]+=1
if (map[i3][j3] == k and i3 - i == j - j3 and i3 >= i - 1 and i3 <= i + 3 and j3 <= j + 1 and j3 >= j - 3):
p[15]+=1
if (map[i3][j3] == k and j - j3 == i - i3 and i3 <= i + 2 and i3 >= i - 2 and j3 <= j + 2 and j3 >= j - 2):
p[16]+=1
if (map[i3][j3] == k and j == j3 and i3 <= i + 2 and i3 >= i - 2 and j3 <= j + 2 and j3 >= j - 2):
p[17]+=1
if (map[i3][j3] == k and i == i3 and i3 <= i + 2 and i3 >= i - 2 and j3 <= j + 2 and j3 >= j - 2):
p[18]+=1
if (map[i3][j3] == k and i - i3 == j3 - j and i3 <= i + 2 and i3 >= i - 2 and j3 <= j + 2 and j3 >= j - 2):
p[19]+=1
for b in range(20):
if p[b]==5:
return True
return False
#绘制提示器(类容,屏幕,字大小)
def text(s,screen,x):
#先把上一次的类容用一个矩形覆盖
pygame.draw.rect(screen,background,[850,100,1200,100])
#定义字体跟大小
s_font=pygame.font.Font('font.ttf',x)
#定义类容,是否抗锯齿,颜色
s_text=s_font.render(s,True,button)
#将字放在窗口指定位置
screen.blit(s_text,(880,100))
pygame.display.flip()
#用于控制顺序
t=True
#用于结束游戏后阻止落子
running=True
#主函数
def main():
#将 t,map,running设置为可改的
global t,map,running,maps,r,h
#将map置零
clear()
#定义储存所有棋盘状态的列表(用于悔棋)
map2=.deep(map)
maps=[map2]
#定义窗口
screen = pygame.display.set_mode([1200,806])
#定义窗口名字
pygame.display.set_caption("五子棋")
#在窗口画出棋盘,提示器以及按钮
Draw_a_chessboard(screen)
pygame.display.flip()
clock=pygame.time.Clock()
while True:
#只有running为真才能落子,主要用于游戏结束后防止再次落子
if running:
if t:
color=1
text('黑棋落子',screen,54)
else:
color=2
text('白棋落子',screen,54)
for event in pygame.event.get():
#点击x则关闭窗口
if event.type ==pygame.QUIT:
pygame.quit()
sys.exit()
#点击窗口里面类容则完成相应指令
elif event.type == MOUSEBUTTONDOWN:
if event.button == 1:
x,y=event.pos[0],event.pos[1]
for i in range(19):
for j in range(19):
#点击棋盘相应位置
if i*40+3+20<x<i*40+3+60 and j*40+3+20<y<j*40+3+60 and not map[i][j] and running:
#在棋盘相应位置落相应颜色棋子
Draw_a_chessman(i+1,j+1,screen,color)
#播放音效
play_chess_sound.play(0)
#在map里面记录落子位置
map[i][j]=color
#将map存入maps
map3=.deep(map)
maps.append(map3)
#判断落子后是否有五子一线
if win(i,j):
if t:
text('黑棋胜利,请重新游戏',screen,30)
else:
text('白棋胜利,请重新游戏',screen,30)
#播放音效
victor_sound.play(0)
#阻止再往棋盘落子
running=False
pygame.display.flip()
t=not t
#如果点击‘重新开始’
if 900<x<1100 and 500<y<600:
#取消阻止
running=True
#播放音效
button_sound.play(0)
#重新开始
main()
#点击‘退出游戏’,退出游戏
elif 900<x<1100 and 650<y<750:
#播放音效
button_sound.play(0)
pygame.quit()
sys.exit()
#点击‘悔棋’
elif 900<x<1020 and 350<y<450 and len(maps)!=1:
#播放音效
button_sound.play(0)
#删除maps里最后一个元素
del maps[len(maps)-1]
#再将最后一个元素给map
map=.deep(maps[len(maps)-1])
#切换顺序
t=not t
#将map显示出来
Draw_a_chessboard_with_chessman(map,screen)
#悔棋完成,阻止再次悔棋
x,y=0,0
clock.tick(60)
if __name__ == "__main__":
try:
main()
except SystemExit:
pass
except:
traceback.print_exc()
pygame.quit()
input()
⑤ python turtle作图问题
简介:turtle是一个简单的绘图工具。它提供了一个海龟,你可以把它理解为一个机器人,只听得懂有限的指令。
1.在文件头写上如下行,这能让我们在语句中插入中文
#-*- coding: utf-8 -*-
2.用import turtle导入turtle库
3.绘图窗口的原点(0,0)在正中间。默认情况下,海龟向正右方移动。
4.操纵海龟绘图有着许多的命令,这些命令可以划分为两种:一种为运动命令,一种为画笔控制命令
(1)运动命令:
forward(d)
向前移动距离d代表距离
backward(d)
向后移动距离d代表距离
right(degree)
向右转动多少度
left(degree)
向左转动多少度
goto(x,y)
将画笔移动到坐标为(x,y)的位置
stamp()
绘制当前图形
speed(speed)
画笔绘制的速度范围[0,10]整数
(2)画笔控制命令:
down()
画笔落下,移动时绘制图形
up()
画笔抬起,移动时不绘制图形
setheading(degree)
海龟朝向,degree代表角度
reset()
恢复所有设置
pensize(width)
画笔的宽度
pencolor(colorstring)
画笔的颜色
fillcolor(colorstring)
绘制图形的填充颜色
fill(Ture)
fill(False)
circle(radius, extent)
绘制一个圆形,其中radius为半径,extent为度数,例如若extent为180,则画一个半圆;如要画一个圆形,可不必写第二个参数
5.几个例子
1)画一个边长为60的三角形
#-*- coding: utf-8 -*-
importturtle
a=60
turtle.forward(a)
turtle.left(120)
turtle.forward(a)
turtle.left(120)
turtle.forward(a)
turtle.left(120)
2)画一个边长为60的正方形,并填充为红色,边框为蓝色
#-*- coding: utf-8 -*-
importturtle
turtle.reset()
a= 60
turtle.fillcolor("red")
turtle.pencolor("blue")
turtle.pensize(10)
turtle.fill(True)
turtle.left(90)
turtle.forward(a)
turtle.left(90)
turtle.forward(a)
turtle.left(90)
turtle.forward(a)
turtle.left(90)
turtle.forward(a)
turtle.fill(False)
6.练习:
1)画一个五边形
2)画一个六边形
3)任意输入一个正整数m(>=3),画一个多边形(m条边)
4)画一个五角星,如下所示,注意填充为红色
5)画一个中国象棋棋盘,如下图所示,其中汉字不必显示出来:
6)绘制奥运五环图,其中五种颜色分别为蓝色、黑色、红色、黄色和绿色。注意根据实际效果调整圆形的大小和位置。
⑥ 怎么用python写三子棋并显示空位
lude<stdio.h>#include<stdlib.h>#include<time.h> char arr[3][3] = { 0 }; //直接定义外部变量所有的函数可以直接使用 因为考虑到棋盘大小是固定的int size = 9; //棋盘大小固定 每下一个子都会使可以下子的容量-1void chessboard() //打印棋盘{ int i = 0, j = 0; printf(" | | /n"); for (i = 0; i < 3; i++) { printf("_%c_|_%c_|_%c_/n", arr[i][0], arr[i][1], arr[i][2]); //棋盘对应位置下棋 if (i < 2) printf(" | | /n"); }}void player() //玩家下棋{ int m = 0, n = 0; printf("player(@):"); //输入的是对应的坐标 scanf_s("%d%d", &m, &n); //玩家输入的坐标必须在范围内并且不能是被下过的地方 if (m<1 || m>3 || n<1 || n>3 || arr[m - 1][n - 1] != ' ') { printf("this place can not play!/n"); //如果不符合要求则继续调用这个函数 player(); } else { arr[m - 1][n - 1] = '@'; //将棋子放入相应的内容 棋盘容量-1 size--; }}void computer() //电脑下棋{ printf("computer(#):/n"); int m = 0, n = 0; srand(time(NULL)); //电脑的坐标是随机产生的 以时间为种子 m = rand() % 3; //对3取余产生0-2的随机数赋给数组下标 n = rand() % 3; while (arr[m][n] != ' ') //如果产生的
⑦ 求教python中的turtle
海龟库(turtle)
海龟库 (turtle) 是Python语言中一个很流行的绘制图像的函数库,想象一个小乌龟,在一个横轴为x、纵轴为y的坐标系原点,(0,0)位置开始,它根据一组函数指令的控制,在这个平面坐标系中移动,从而在它爬行的路径上绘制了图形。
海龟库积木盒有点类似Kitten创作工具的画笔和动作积木盒的结合体,可以绘制、控制画笔移动,大家使用一下就可以体会了哦。
海龟图的窗口坐标系同Kitten舞台类似,小窗口的情况下,海龟图高和宽是固定400像素。全屏的海龟图和浏览器本身的尺寸有关。
海龟图和math库、random库一样,需要先导入库import turtle,才可以使用库中的函数。使用海龟库中的函数,你可以画出各种有趣的图形。
⑧ 如何用python turtle画一个中国象棋的棋盘
#绘制棋盘,每个格子50
importturtle
t=turtle.Pen()
bs=50
#画直线
defline(x,y,z):
t.penup()
t.goto(x,y)
t.pendown()
t.fd(z)
#两点直线
defany(a,b,c,d):
t.penup()
t.goto(a,b)
t.pendown()
t.goto(c,d)
#画L型
deftypeL(x,y):
t.penup()
t.goto(x-bs*0.25,y+bs*0.075)
t.pendown()
t.goto(x-bs*0.075,y+bs*0.075)
t.goto(x-bs*0.075,y+bs*0.25)
t.penup()
t.goto(x-bs*0.25,y-bs*0.075)
t.pendown()
t.goto(x-bs*0.075,y-bs*0.075)
t.goto(x-bs*0.075,y-bs*0.25)
t.penup()
t.goto(x+bs*0.25,y+bs*0.075)
t.pendown()
t.goto(x+bs*0.075,y+bs*0.075)
t.goto(x+bs*0.075,y+bs*0.25)
t.penup()
t.goto(x+bs*0.25,y-bs*0.075)
t.pendown()
t.goto(x+bs*0.075,y-bs*0.075)
t.goto(x+bs*0.075,y-bs*0.25)
#画半L型
deftypehL(x,y,z):
if(z=='l'):
t.penup()
t.goto(x-bs*0.25,y+bs*0.075)
t.pendown()
t.goto(x-bs*0.075,y+bs*0.075)
t.goto(x-bs*0.075,y+bs*0.25)
t.penup()
t.goto(x-bs*0.25,y-bs*0.075)
t.pendown()
t.goto(x-bs*0.075,y-bs*0.075)
t.goto(x-bs*0.075,y-bs*0.25)
if(z=='r'):
t.penup()
t.goto(x+bs*0.25,y+bs*0.075)
t.pendown()
t.goto(x+bs*0.075,y+bs*0.075)
t.goto(x+bs*0.075,y+bs*0.25)
t.penup()
t.goto(x+bs*0.25,y-bs*0.075)
t.pendown()
t.goto(x+bs*0.075,y-bs*0.075)
t.goto(x+bs*0.075,y-bs*0.25)
#画横线
p=bs*4.5
while(p>=-bs*4.5):
line(-bs*4,p,bs*8)
p=p-bs
any(bs*4,bs*4.5,bs*4,-bs*4.5)
any(-bs*4,bs*4.5,-bs*4,-bs*4.5)
t.right(90)
q=-bs*3
while(q<bs*4):
line(q,bs*4.5,bs*4)
q=q+bs
q=-bs*3
while(q<bs*4):
line(q,-bs*0.5,bs*4)
q=q+bs
#画斜线
any(-bs,-bs*4.5,bs,-bs*2.5)
any(bs,-bs*4.5,-bs,-bs*2.5)
any(-bs,bs*4.5,bs,bs*2.5)
any(bs,bs*4.5,-bs,bs*2.5)
#画L型
typeL(-bs*2,-bs*1.5)
typeL(0,-bs*1.5)
typeL(bs*2,-bs*1.5)
typeL(-bs*2,bs*1.5)
typeL(0,bs*1.5)
typeL(bs*2,bs*1.5)
typeL(-bs*3,-bs*2.5)
typeL(bs*3,-bs*2.5)
typeL(-bs*3,bs*2.5)
typeL(bs*3,bs*2.5)
typehL(-bs*4,-bs*1.5,'r')
typehL(bs*4,-bs*1.5,'l')
typehL(-bs*4,bs*1.5,'r')
typehL(bs*4,bs*1.5,'l')
turtle.done()
⑨ python版本五子棋
机器博弈是人工智能领域的重要分支,它的研究对象多以复杂的棋牌类智力游戏为主,已经得到解决的棋类游戏,几乎全部都应归功于机器博弈近半个世纪的发展。计算机解决问题的优势在于能把不易解析的问题,借助于现代计算机的运算速度优势枚举出所有的合理情形而得解;然而,博弈问题的复杂程度决定了它不能过度依赖机器的计算能力。许多待解决的或已经解决的棋类,其状态空间复杂度或博弈树复杂度量级都太过庞大,所以我们需要添加约束,并且采用合理的算法进行优化。
五子棋问题是人工智能中的一个经典问题。当今世界,AlphaGo已经执围棋之牛耳,五子棋领域却鲜少有人问津。本文根据课堂所学知识结合文献、博客,基于两种开发语言实现了一个智能对战的AI五子棋游戏平台。
本文所做工作如下:
(1) 五子棋界面实现;
(2) 智能判定棋盘走势;
(3) 改进了棋盘扫描方式;
(4) 改良了系统评分表评估方式;
(5) 实现了基于点评分表估值找出最佳落子方式。
五子棋AI问题的最大问题是如何实现智能对弈,即当人落子之后,算法如何解读当前的棋盘并且对其进行分析解读,得到电脑方的最佳落子点。其次还有一个问题是如何判断胜利,这可以作为前面棋盘局势判定的一个子问题,也可以看做是一个单独的问题,不过这个问题总体来说较为简单,所以不做详细说明。
五子棋的整体知识构建包含以下部分:
(1) 棋盘局面表示法
(2) 棋局胜利判定
(3) 棋型知识库
(4) 智能博弈流程
对于问题(1),采用数组表示法。棋盘中的各交叉点有三种状态,不妨令 0表示空(未放置棋子) ,-1 表示有黑子 ,1 表示有白子,数组表示法的基本思想是:以交叉点对应的数组索引值来表达物理位置 ,以交叉点对应的元素值表达状态(空、 黑子、 白子)。令 V = {0 ,1 ,-1} ,棋盘 的第 i 个交叉点的状态 Si ∈V ,任何棋局都可以表示成一个 n ×n 的二元组。
对于问题(2), 采用数组表示法时,想知道任意两个元素 Si 和Sj 是否共线,要通过 i 和 j 之间的数值规律来判断。从这方面看,数组表示法是一种原始、低效的表示方法,但是对于评分表算法来说其性能损失是可以接受的。要判断是否有一方已经胜利,只需要对整个棋盘判定当前落子点的纵、横、正斜、反斜四个方向的最长延伸出四个位置看是否能连成一条同色直线即可。具体的操作可以视为:从落子点出发,向两个方向延伸,如果遇到同色,那么计数器加一,遇到非同色(空白或者异色)则停止在该方向的延伸,一个计数器记下该方向上的两头的连续同色棋子数。等到四个方向都探索完毕,如果四个计数器中有一个计数器达到了5,那么即可判断出已经有五子连珠了,此局结束。
问题(3)棋型知识库主要包括各种既定的棋盘形式,有如下几种:
² 活四 :有两个连五点(即有两个点可以形成五),图中白点即为连五点。当活四出现的时候,整个局势已经无法阻止连五了,活四的归属方一定能取得胜利;
² 冲四 :有一个连五点,如下面三图,均为冲四棋型。图中白点为连五点。 相对比活四来说,冲四的威胁性就小了很多,因为这个时候,只要跟着防守在那个唯一的连五点上,冲四就没法形成连五。
² 活三 :可以形成活四的三,如下图,代表两种最基本的活三棋型。图中白点为活四点。活三棋型是进攻中最常见的一种,因为活三之后,如果对方不以理会,将可以下一手将活三变成活四,而活四是无法防守的。所以,面对活三的时候,需要非常谨慎对待。在没有更好的进攻手段的情况下,必须对其进行防守,以防止其形成可怕的活四棋型。
² 眠三: 只能够形成冲四的三,如下各图,分别代表最基础的六种眠三形状。图中白点代表冲四点。眠三的棋型与活三的棋型相比,危险系数下降不少,因为眠三棋型即使不去防守,下一手它也只能形成冲四,而对于单纯的冲四棋型,是可以很简单的防守住的。
² 活二 :能够形成活三的二,如下图,是三种基本的活二棋型。图中白点为活三点。
² 眠二 :能够形成眠三的二。图中四个为最基本的眠二棋型,细心且喜欢思考的同学会根据眠三介绍中的图2-13找到与下列四个基本眠二棋型都不一样的眠二。图中白点为眠三点。
对于上述的棋型,我们主要考虑的是活四、冲四、活三、眠三这几种主要的进攻棋型的防守与构成,整体棋型遵从以下原则:优先考虑数目,同等数目的情况下考虑是活是眠。评分表算法的设计整体偏向于防守。
对于问题(4),当下棋型的评估分析,算法严格遵从以下流程:
当人类方落下一子,算法启动,扫描全局,得到人类棋子的集合和电脑棋子的集合。全局扫描之后,对当前局势进行排序、计算。对每个集合的每个空白点位置打分,打分依据是根据这个点周围四个方向上的同色连续棋子的数量。按照这些最后得到的评分,得出最大值。得到人类方和电脑方的两个最大值之后,进行比较,如果人类方局势较好(分数较高),则算法将下一次落子位置设置为人类方得分最高的点,尽力降低人类方的下一步得分;如果电脑方的分数较高,那么则直接在使得分数最高的点落子即可。
本次课程设计,一共设计了两个版本,一个Java版本,为19X19的棋盘,配备简单的消息提示,基于AWT实现GUI,开发工具IntelliJ IDEA 2018.1
另一个版本是使用Python设计,核心算法相同,但是受限于图片源文件,为15X15棋盘,基于pygame实现GUI,开发工具是:JetBrains PyCharm 2018.2.4 x64
因为近期时间较为紧迫,所以《人工智能》这门课我选择了较为简单的五子棋问题进行课程设计。在本次课程设计中,我的编码能力、调试能力、算法解读实现能力、函数优化能力等各方面有了长足的进步。在本次的设计过程中也出现了几个问题,下面对这些问题进行一个简单的描述:
(1) 对棋盘局势的判断力不够,因为只是简单的对当前的棋盘局势进行判断,基本等同于一个粗通规则而且天赋不高的五子棋选手。如果对手很细心,而且熟练经营各种布局策略,那么基本这个算法就会被钻研出习惯,从而被轻易针对,而且针对方案百试不爽;
(2) 判断棋局形式的时候对边界的评分算法跟中心区域的评分算法一致,无法有效提前识别边界,降低边界空白点的权重;
(3) 用户图形界面需要改进,另外可以增设PK模式以及选色、选择棋盘大小功能等;
后续可以尝试用博弈树算法尝试与当前算法进行比较。评分表算法牺牲了更高的精度,以求迅速的得出最佳落子点;而博弈树可以通过提前落子进行全局预判进行更全方位的对人类方的围追堵截。
另外,可以通过在课堂上学到的知识,比如BFS、DFS、A*算法、决策树算法 等应用于五子棋的智能决策中。
《人工智能》这门课让我对于图、知识表示、智能决策等各个方面有了更好地认识与体验,课堂设计内容充实有趣,让我受益匪浅,希望今后可以更加深入这个方面,并且将课堂上学到的知识应用于实践之中。
⑩ 求Python大神给个200行左右的代码,多点注释,做期末大作业
#-*-coding:utf-8-*-
importcurses#引入curses模块,curses是一个在Linux/Unix下广泛应用的图形函数库.,作用是可以绘制在DOS下的用户界面和漂亮的图形。
fromrandomimportrandrange,choice#从random模块引入randrange,choice这两个类
#从collections引入defaultdict这个类
letter_codes=[ord(ch)forchin'WASDRQwasdrq']#ord函数是把字符转换成对应的数字
actions=['Up','Left','Down','Right','Restart','Exit']#上,左,下,右,重启,退出
actions_dict=dict(zip(letter_codes,actions*2))#把字母与动作对应起来。zip是把元组中的值对应起来。
#############################
WUp
ALeft
SDown
DRight
RRestart
QExit
wUp
aLeft
sDown
dRight
rRestart
QExit
##############################################
defget_user_action(keyboard):
char="N"#char的初始值为Nwhilecharnotinactions_dict:
char=keyboard.getch()returnactions_dict[char]#阻塞+循环,直到获得用户有效输入才返回对应行为deftranspose(field):return[list(row)forrowinzip(*field)]#zip函数里边加*号,是把行变列,列变行。所以这句代码是行列转置definvert(field):return[row[::-1]forrowinfield]#这句代码是把列表前后颠倒classGameField(object):#创建一个叫做GameField的类,用来创建棋盘def__init__(self,height=4,width=4,win=2048):这个类三个参数self.height=height#高self.width=width#宽self.win_value=win#过关分数self.score=0#当前分数self.highscore=0#最高分self.reset()#重置棋盘defreset(self):#定义一个reset函数ifself.score>self.highscore:#如果当前分数大于最高分,那么把当前分数赋值给最高分self.highscore=self.scoreself.score=0#当前分数恢复到0分self.field=[[0foriinrange(self.width)]forjinrange(self.height)]#横纵坐标恢复到(0,0)self.spawn()#调用spawn这个函数self.spawn()defmove(self,direction):#定义move函数defmove_row_left(row):#向左移deftighten(row):#squeesenon-zeroelementstogether把零散的非零单元挤到一块
new_row=[iforiinrowifi!=0]#如果i不等于零,把他们赋值到new_row这个元组中
new_row+=[0foriinrange(len(row)-len(new_row))]#其余位置用0补充returnnew_row#返回这个元组defmerge(row):#定义merge函数,用来合并单元
pair=False#pair初始值为假
new_row=[]#new_row初始值为空foriinrange(len(row)):#让i在格子里循环ifpair:如果pair为真
new_row.append(2*row[i])#那么把把row【i】的值乘以2,追加到new_row后边self.score+=2*row[i]#并且得分为row【i】的值乘以2
pair=False#pair重新赋值为假else:如果pair为真ifi+1<len(row)androw[i]==row[i+1]:#如果i+1还没到边界,并且此时的row【i】=row【i+1】
pair=True#那么pair为真
new_row.append(0)#new_row后追加零else:
new_row.append(row[i])#否则追加row【i】
assertlen(new_row)==len(row)#提醒两者长度一致returnnew_rowreturntighten(merge(tighten(row)))#反复合并,知道不能合并为止
moves={}
moves['Left']=lambdafield:
[move_row_left(row)forrowinfield]#做移动
moves['Right']=lambdafield:
invert(moves['Left'](invert(field)))#invert是逆转
moves['Up']=lambdafield:
transpose(moves['Left'](transpose(field)))#transpose是转置
moves['Down']=lambdafield:
transpose(moves['Right'](transpose(field)))ifdirectioninmoves:ifself.move_is_possible(direction):#如果移动方向在四个方向上,self.field=moves[direction](self.field)那么调用moves函数self.spawn()#产生随机数returnTrueelse:returnFalsedefis_win(self):returnany(any(i>=self.win_valueforiinrow)forrowinself.field)defis_gameover(self):returnnotany(self.move_is_possible(move)formoveinactions)defdraw(self,screen):
help_string1='(W)Up(S)Down(A)Left(D)Right'
help_string2='(R)Restart(Q)Exit'
gameover_string='GAMEOVER'
win_string='YOUWIN!'defcast(string):
screen.addstr(string+' ')defdraw_hor_separator():
line='+'+('+------'*self.width+'+')[1:]
separator=defaultdict(lambda:line)ifnothasattr(draw_hor_separator,"counter"):
draw_hor_separator.counter=0
cast(separator[draw_hor_separator.counter])
draw_hor_separator.counter+=1defdraw_row(row):
cast(''.join('|{:^5}'.format(num)ifnum>0else'|'fornuminrow)+'|')
screen.clear()
cast('SCORE:'+str(self.score))if0!=self.highscore:
cast('HGHSCORE:'+str(self.highscore))forrowinself.field:
draw_hor_separator()
draw_row(row)
draw_hor_separator()ifself.is_win():
cast(win_string)else:ifself.is_gameover():
cast(gameover_string)else:
cast(help_string1)
cast(help_string2)defspawn(self):
new_element=4ifrandrange(100)>89else2
(i,j)=choice([(i,j)foriinrange(self.width)forjinrange(self.height)ifself.field[i][j]==0])self.field[i][j]=new_elementdefmove_is_possible(self,direction):defrow_is_left_movable(row):
defchange(i):#trueifthere'llbechangeini-thtileifrow[i]==0androw[i+1]!=0:#MovereturnTrueifrow[i]!=0androw[i+1]==row[i]:#(change(i)foriinrange(len(row)-1))
check={}
check['Left']=lambdafield:
any(row_is_left_movable(row)forrowinfield)
check['Right']=lambdafield:
check['Left'](invert(field))
check['Up']=lambdafield:
check['Left'](transpose(field))
check['Down']=lambdafield:
check['Right'](transpose(field))ifdirectionincheck:returncheck[direction](self.field)else:returnFalsedefmain(stdscr):definit():#重置游戏棋盘
game_field.reset()return'Game'defnot_game(state):#画出GameOver或者Win的界面
game_field.draw(stdscr)#读取用户输入得到action,判断是重启游戏还是结束游戏
action=get_user_action(stdscr)
responses=defaultdict(lambda:state)#默认是当前状态,没有行为就会一直在当前界面循环
responses['Restart'],responses['Exit']='Init','Exit'#对应不同的行为转换到不同的状态returnresponses[action]defgame():#画出当前棋盘状态
game_field.draw(stdscr)#读取用户输入得到action
action=get_user_action(stdscr)ifaction=='Restart':return'Init'ifaction=='Exit':return'Exit'ifgame_field.move(action):#movesuccessfulifgame_field.is_win():return'Win'ifgame_field.is_gameover():return'Gameover'return'Game'
state_actions={'Init':init,'Win':lambda:not_game('Win'),'Gameover':lambda:not_game('Gameover'),'Game':game
}
curses.use_default_colors()
game_field=GameField(win=32)
state='Init'#状态机开始循环whilestate!='Exit':
state=state_actions[state]()
curses.wrapper(main)