当前位置:首页 » 编程语言 » python直方图均衡

python直方图均衡

发布时间: 2022-12-10 19:22:45

‘壹’ 一文搞懂直方图均衡

根据 维基网络 上的定义, 直方图均衡(Histogram Equalization)是图像处理领域中利用直方图对对比度进行调整的方法.

顾名思义, 直方图均衡是将直方图的分布(概率密度)调整为均匀分布.

根据信息论, 信息的熵越大, 包含的信息也就越多, 熵的计算公式如下:

只有当 均匀分布时, 熵的值最大. 对应到图像上, 当图像直方图均匀分布时, 图像对比度最大. 如下图所示:

蓝色为原始图像直方图, 绿色为均衡后直方图, 对应的处理后的图像为:

可以看到, 直方图均衡处理后, 图像变得更加清晰了.

知道了为什么, 就要知道怎么做. 一般直方图均值有以下几个步骤:

式中, , 分别为图像的高和宽, 表示灰度值为 的像素的个数, 为变换后的灰度值, 为映射函数, 计算过程使用了累计直方图.

知道怎么做了, 就要知道为什么可以这么做. 这里解释下为啥可以这么做, 即公式(3)是怎么得到的.

设原始直方图分为为

均衡化后的直方图分布为

映射函数为

这里映射函数必须为单调递增函数, 满足:

即对应区域间内像素点的总数是一样的, 如下图红色区域所示:

将公式(4)代入公式(5), 则有:

因而, 可以得到:

对应的离散形式为公式(3).

直方图均衡过度的强调了灰度个数的重要性, 对数量多的灰度过度的进行了增强, 而图像中, 比例比不是很多的灰度往往更重要, 因而改进的方向就是减少数量多的灰度的影响, 我这里想到的有 3 种方法:

这3种方法的映射关系曲线如下所示:

从图中可以看到, 原始的直方图均衡后图像最亮, 如下所示为几种方法的结果对比, 依次为原图, 原始直方图, 改进0, 改进1, 改进2:

可以看到, 直方图可以改善图像整体的质量, 但对于某些局部图像, 则由于直方图的性质导致过亮或者过暗.

这里总结下直方图均衡化的优缺点:

‘贰’ 图像直方图均衡化

一. 直方图均衡化:

        直方图均衡化是使图像直方图变得平坦的操作。直方图均衡化能够有效地解决图像整体过暗、过亮的问题,增加图像的清晰度。

        具体流程如下所示。其中S是总的像素数,Zmax是像素的最大取值(8位灰度图像为255),h(i)为图像像素取值为 i 及 小于 i 的像素的总数。

二. python实现直方图均衡化操作

import cv2

import numpy as np

import matplotlib.pyplot as plt

# histogram equalization

def hist_equal(img, z_max=255):

        H, W = img.shape

        S = H * W  * 1.

        out = img.()

        sum_h = 0.

        for i in range(1, 255):

                ind = np.where(img == i)

                sum_h += len(img[ind])

                z_prime = z_max / S * sum_h

                out[ind] = z_prime

        out = out.astype(np.uint8)

        return out

# Read image

img = cv2.imread("../head_g_n.jpg",0).astype(np.float)

# histogram normalization

out = hist_equal(img)

# Display histogram

plt.hist(out.ravel(), bins=255, rwidth=0.8, range=(0, 255))

plt.show()

plt.savefig("out_his.png")

# Save result

cv2.imshow("result", out)

cv2.imwrite("out.jpg", out)

cv2.waitKey(0)

cv2.destroyAllWindows()

三. 实验结果:

        可以看到,直方图均衡化后的图像看起来比原来的图像更加清晰。对于图像亮度整体偏暗或者偏亮的图像,我们可以采用直方图均衡化的方法处理图像,使得它们看上去更加清晰。

四. matlab 实现图像直方图均衡化:

        可以参考一篇优秀的博文:         https://blog.csdn.net/Ibelievesunshine/article/details/79961027

五. 参考内容:

         https://www.cnblogs.com/wojianxin/p/12510797.html

         https://blog.csdn.net/Ibelievesunshine/article/details/104922449

‘叁’ 直方图均衡化

直方图均衡化的作用是图像增强。其过程是将图像的像素分布通过一种方法映射到另外一种分布上去,在该映射过程中主要使用了累积分布函数。累积分布函数用于描述随机变量的概率分布(F(x)=P(X<x)),该函数是递增的,并且值域分布范围是0-1,假如我们要处理的图像是灰度图,它的像素值分布在0-255,可以与0-1对应起来。因此使用累积分布函数按照某种方法来映射可以保证原来的大小关系不变,较亮的区域,依旧是较亮的,较暗依旧暗,只是对比度增大,绝对不会明暗颠倒。
先来看一个实例。
假设有如下图像:

得图像的统计信息如下图所示,并根据统计信息完成灰度值映射:

映射后的图像如下所示:

由上述实例我们可以看到,将像素值转换为另一个像素值,并且原来的大小关系并没有改变,但是直画出方图的话,会发现直方图变缓了。

1、声明原图和目标图以及窗体名称:Declare the source and destination images as well as the windows names:

2、加载源图像:Load the source image:

3、转为灰度图:Convert it to grayscale:

4、利用函数 equalizeHist 对上面灰度图做直方图均衡化:Apply histogram equalization with the function cv::equalizeHist :

可以看到, 这个操作的参数只有源图像和目标 (均衡化后) 图像.As it can be easily seen, the only arguments are the original image and the output (equalized) image。

5、显示这两个图像 (源图像和均衡化后图像) :Display both images (original and equalized) :

6、等待用户案件退出程序Wait until user exists the program

1、为了更好地观察直方图均衡化的效果, 我们使用一张对比度不强的图片作为源图像输入, 如下图:To appreciate better the results of equalization, let's introce an image with not much contrast, such as:

它的直方图为:which, by the way, has this histogram:

注意到像素大多集中在直方图中间的强度上.notice that the pixels are clustered around the center of the histogram.

2、使用例程进行均衡化后, 我们得到下面的结果After applying the equalization with our program, we get this result:

这幅图片显然对比度更强. 再验证一下均衡化后图片的直方图this image has certainly more contrast. Check out its new histogram like this:

注意到现在像素在整个强度范围内均衡分布Notice how the number of pixels is more distributed through the intensity range.

zhlifly@ OpenCV中文网站 < [email protected] >

直方图均衡化的数学原理

‘肆’ 数字图像处理Python实现图像灰度变换、直方图均衡、均值滤波

import CV2

import

import numpy as np

import random

使用的是pycharm

因为最近看了《银翼杀手2049》,里面Joi实在是太好看了所以原图像就用Joi了

要求是灰度图像,所以第一步先把图像转化成灰度图像

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

第一个任务是利用分段函数增强灰度对比,我自己随便写了个函数大致是这样的

def chng(a):

if a < 255/3:

b = a/2

elif a < 255/3*2:

b = (a-255/3)*2 + 255/6

else:

b = (a-255/3*2)/2 + 255/6 +255/3*2

return b

rows = img.shape[0]

cols = img.shape[1]

cover = .deep(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

下一步是直方图均衡化

# histogram equalization

def hist_equal(img, z_max=255):

H, W = img.shape

# S is the total of pixels

S = H * W * 1.

out = img.()

sum_h = 0.

for i in range(1, 255):

ind = np.where(img == i)

sum_h += len(img[ind])

z_prime = z_max / S * sum_h

out[ind] = z_prime

out = out.astype(np.uint8)

return out

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

在实现滤波之前先添加高斯噪声和椒盐噪声(代码来源于网络)

不知道这个椒盐噪声的名字是谁起的感觉隔壁小孩都馋哭了

用到了random.gauss()

percentage是噪声占比

def GaussianNoise(src,means,sigma,percetage):

NoiseImg=src

NoiseNum=int(percetage*src.shape[0]*src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)

if NoiseImg[randX, randY]< 0:

NoiseImg[randX, randY]=0

elif NoiseImg[randX, randY]>255:

NoiseImg[randX, randY]=255

return NoiseImg

def PepperandSalt(src,percetage):

NoiseImg=src

NoiseNum=int(percetage*src.shape[0]*src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

if random.randint(0,1)<=0.5:

NoiseImg[randX,randY]=0

else:

NoiseImg[randX,randY]=255

return NoiseImg

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

下面开始均值滤波和中值滤波了

就以n x n为例,均值滤波就是用这n x n个像素点灰度值的平均值代替中心点,而中值就是中位数代替中心点,边界点周围补0;前两个函数的作用是算出这个点的灰度值,后两个是对整张图片进行

#均值滤波模板

def mean_filter(x, y, step, img):

sum_s = 0

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 > img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 > img.shape[1]:

sum_s += 0

else:

sum_s += img[k][m] / (step*step)

return sum_s

#中值滤波模板

def median_filter(x, y, step, img):

sum_s=[]

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 > img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 > img.shape[1]:

sum_s.append(0)

else:

sum_s.append(img[k][m])

sum_s.sort()

return sum_s[(int(step*step/2)+1)]

def median_filter_go(img, n):

img1 = .deep(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = median_filter(i, j, n, img)

return img1

def mean_filter_go(img, n):

img1 = .deep(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = mean_filter(i, j, n, img)

return img1

完整main代码如下:

if __name__ == "__main__":

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

rows = img.shape[0]

cols = img.shape[1]

cover = .deep(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

meanimg3 = mean_filter_go(covereqps, 3)

CV2.imwrite('medimg3.png', meanimg3)

meanimg5 = mean_filter_go(covereqps, 5)

CV2.imwrite('meanimg5.png', meanimg5)

meanimg7 = mean_filter_go(covereqps, 7)

CV2.imwrite('meanimg7.png', meanimg7)

medimg3 = median_filter_go(covereqg, 3)

CV2.imwrite('medimg3.png', medimg3)

medimg5 = median_filter_go(covereqg, 5)

CV2.imwrite('medimg5.png', medimg5)

medimg7 = median_filter_go(covereqg, 7)

CV2.imwrite('medimg7.png', medimg7)

medimg4 = median_filter_go(covereqps, 7)

CV2.imwrite('medimg4.png', medimg4)

‘伍’ Python:这有可能是最详细的PIL库基本概念文章了

PIL有如下几个模块:Image模块、ImageChops模块、ImageCrackCode模块、ImageDraw模块、ImageEnhance模块、ImageFile模块、ImageFileIO模块、ImageFilter模块、ImageFont模块、ImageGrab模块、ImageOps模块、ImagePath模块、ImageSequence模块、ImageStat模块、ImageTk模块、ImageWin模块、PSDraw模块

啊啊啊啊怎么这么多模块啊~~~!!!!

别担心我为你一一讲解

Image模块提供了一个相同名称的类,即image类,用于表示PIL图像。

Image模块是PIL中最重要的模块 ,比如创建、打开、显示、保存图像等功能,合成、裁剪、滤波等功能,获取图像属性功能,如图像直方图、通道数等。

Image模块的使用如下:

ImageChops模块包含一些算术图形操作,这些操作可用于诸多目的,比如图像特效,图像组合,算法绘图等等,通道操作只用于8位图像。

ImageChops模块的使用如下:

由于图像im_p是im的复制过来的,所以它们的差为0,图像im_diff显示时为黑图。

ImageCrackCode模块允许用户检测和测量图像的各种特性。 这个模块只存在于PIL Plus包中。

因为我目前安装的PIL中没有包含这个模块。所以就不详细介绍了

ImageDraw模块为image对象提供了基本的图形处理功能。 例如,它可以创建新图像,注释或润饰已存在图像,为web应用实时产生各种图形。

ImageDraw模块的使用如下:

在del draw前后显示出来的图像im是完全一样的,都是在原有图像上画了两条对角线。

原谅我的报错

ImageEnhance模块包括一些用于图像增强的类。它们分别为 Color类、Brightness类、Contrast类和Sharpness类。

ImageEnhance模块的使用如下:

图像im0的亮度为图像im的一半。

ImageFile模块为图像打开和保存功能提供了相关支持功能。另外,它提供了一个Parser类,这个类可以一块一块地对一张图像进行解码(例如,网络联接中接收一张图像)。这个类的接口与标准的sgmllib和xmllib模块的接口一样。

ImageFile模块的使用如下:

因为所打开图像大小大于1024个byte,所以报错:图像不完整。

所以大家想看的可以自行去找一个小一点的图看一下

ImageFileIO模块用于从一个socket或者其他流设备中读取一张图像。 不赞成使用这个模块。 在新的code中将使用ImageFile模块的Parser类来代替它。

ImageFilter模块包括各种滤波器的预定义集合,与Image类的filter方法一起使用。该模块包含这些图像增强的滤器:BLUR,CONTOUR,DETAIL,EDGE_ENHANCE,EDGE_ENHANCE_MORE,EMBOSS,FIND_EDGES,SMOOTH,SMOOTH_MORE和SHARPEN。

ImageFilter模块的使用如下:

ImageFont模块定义了一个同名的类,即ImageFont类。这个类的实例中存储着bitmap字体,需要与ImageDraw类的text方法一起使用。

PIL使用自己的字体文件格式存储bitmap字体。用户可以使用pilfont工具包将BDF和PCF字体描述器(Xwindow字体格式)转换为这种格式。

PIL Plus包中才会支持矢量字体。

ImageGrab模块用于将屏幕上的内容拷贝到一个PIL图像内存中。 当前的版本只在windows操作系统上可以工作。

ImageGrab模块的使用如下:

图像im显示出笔记本当前的窗口内容,就是类似于截图的工具

ImageOps模块包括一些“ready-made”图像处理操作。 它可以完成直方图均衡、裁剪、量化、镜像等操作 。大多数操作只工作在L和RGB图像上。

ImageOps模块的使用如下:

图像im_flip为图像im垂直方向的镜像。

ImagePath模块用于存储和操作二维向量数据。Path对象将被传递到ImageDraw模块的方法中。

ImagePath模块的使用如下:

ImageSequence模块包括一个wrapper类,它为图像序列中每一帧提供了迭代器。

ImageSequence模块的使用如下:

后面两次show()函数调用,分别显示第1张和第11张图像。

ImageStat模块计算一张图像或者一张图像的一个区域的全局统计值。

ImageStat模块的使用如下:

ImageTk模块用于创建和修改BitmapImage和PhotoImage对象中的Tkinter。

ImageTk模块的使用如下:

这个是我一直不太懂的有没有大佬能帮我解决一下在线等~急!

PSDraw模块为Postscript打印机提供基本的打印支持。用户可以通过这个模块打印字体,图形和图像。

PIL中所涉及的基本概念有如下几个: 通道(bands)、模式(mode)、尺寸(size)、坐标系统(coordinate system)、调色板(palette)、信息(info)和滤波器(filters)。

每张图片都是由一个或者多个数据通道构成。PIL允许在单张图片中合成相同维数和深度的多个通道。

以RGB图像为例,每张图片都是由三个数据通道构成,分别为R、G和B通道。而对于灰度图像,则只有一个通道。

对于一张图片的通道数量和名称,可以通过getbands()方法来获取。getbands()方法是Image模块的方法,它会返回一个字符串元组(tuple)。该元组将包括每一个通道的名称。

Python的元组与列表类似,不同之处在于元组的元素不能修改,元组使用小括号,列表使用方括号,元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可。

getbands()方法的使用如下:

图像的模式定义了图像的类型和像素的位宽。当前支持如下模式:

1:1位像素,表示黑和白,但是存储的时候每个像素存储为8bit。

L:8位像素,表示黑和白。

P:8位像素,使用调色板映射到其他模式。

I:32位整型像素。

F:32位浮点型像素。

RGB:3x8位像素,为真彩色。

RGBA:4x8位像素,有透明通道的真彩色。

CMYK:4x8位像素,颜色分离。

YCbCr:3x8位像素,彩色视频格式。

PIL也支持一些特殊的模式,包括RGBX(有padding的真彩色)和RGBa(有自左乘alpha的真彩色)。

可以通过mode属性读取图像的模式。其返回值是包括上述模式的字符串。

mode 属性 的使用如下:

通过size属性可以获取图片的尺寸。这是一个二元组,包含水平和垂直方向上的像素数。

mode属性的使用如下:

PIL使用笛卡尔像素坐标系统,坐标(0,0)位于左上角。注意:坐标值表示像素的角;位于坐标(0,0)处的像素的中心实际上位于(0.5,0.5)。

坐标经常用于二元组(x,y)。长方形则表示为四元组,前面是左上角坐标。例如:一个覆盖800x600的像素图像的长方形表示为(0,0,800,600)。

调色板模式 ("P")使用一个颜色调色板为每个像素定义具体的颜色值

使用info属性可以为一张图片添加一些辅助信息。这个是字典对象。加载和保存图像文件时,多少信息需要处理取决于文件格式。

info属性的使用如下:

对于将多个输入像素映射为一个输出像素的几何操作,PIL提供了4个不同的采样滤波器:

NEAREST:最近滤波。 从输入图像中选取最近的像素作为输出像素。它忽略了所有其他的像素。

BILINEAR:双线性滤波。 在输入图像的2x2矩阵上进行线性插值。注意:PIL的当前版本,做下采样时该滤波器使用了固定输入模板。

BICUBIC:双立方滤波。 在输入图像的4x4矩阵上进行立方插值。注意:PIL的当前版本,做下采样时该滤波器使用了固定输入模板。

ANTIALIAS:平滑滤波。 这是PIL 1.1.3版本中新的滤波器。对所有可以影响输出像素的输入像素进行高质量的重采样滤波,以计算输出像素值。在当前的PIL版本中,这个滤波器只用于改变尺寸和缩略图方法。

注意:在当前的PIL版本中,ANTIALIAS滤波器是下采样 (例如,将一个大的图像转换为小图) 时唯一正确的滤波器。 BILIEAR和BICUBIC滤波器使用固定的输入模板 ,用于固定比例的几何变换和上采样是最好的。Image模块中的方法resize()和thumbnail()用到了滤波器。

resize()方法的定义为:resize(size, filter=None)=> image

resize()方法的使用如下:

对参数filter不赋值的话,resize()方法默认使用NEAREST滤波器。如果要使用其他滤波器可以通过下面的方法来实现:

thumbnail ()方法的定义为:im.thumbnail(size, filter=None)

thumbnail ()方法的使用如下:

这里需要说明的是,方法thumbnail()需要保持宽高比,对于size=(200,200)的输入参数,其最终的缩略图尺寸为(182, 200)。

对参数filter不赋值的话,方法thumbnail()默认使用NEAREST滤波器。如果要使用其他滤波器可以通过下面的方法来实现:

‘陆’ 图像处理的Python问题,怎么解决

imtools.py里面也要有numpy 的引用才对
def histeq(im,nbr_bins=256):
"""对一幅灰度图像进行直方图均衡化"""

#计算图像的直方图
imhist,bins = histogram(im.flatten(),nbr_bins,normed=True)
cdf = imhist.cumsum() #累计分布函数
cdf = 255 * cdf / cdf[-1] #归一化

#使用累计分布函数的线性插值,计算新的像素
im2 = interp(im.flatten(),bins[:-1],cdf)

return im2.reshape(im.shape),cdf

以上代码我定义在imtools.py文件里并且放在了python2.7里

然后我在num.py里引用他

Python code?
1
2
3
4
5
6
7
8
9
10

from PIL import Image
from pylab import *
from numpy import *
import imtools

im= array(Image.open('E:\\daima\\pydaima\\shijue\\tupian1\\gang2.jpg').convert('L'))

im2,cdf =imtools.histeq(im)

出现以下错误:
Traceback (most recent call last):
File "<pyshell#56>", line 1, in <mole>
a=imtools.histeq(im)
File "E:\daima\pydaima\shijue\imtools.py", line 32, in histeq
NameError: global name 'histogram' is not defined

‘柒’ 直方图均衡化

想象一下,如果一副图像中的大多是像素点的像素值都集中在一个像素值范围之内会怎样呢?例如,如果一幅图片整体很亮,那所有的像素值应该都会很高。但是一副高质量的图像的像素值分布应该很广泛。所以你应该把它的直方图做一个横向拉伸(如下图),这就是直方图均衡化要做的事情。通常情况下,这种操作会改善图像的对比度。

这种方法通常用来增加许多图像的全局 对比度 ,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法, 亮度 可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

这种方法对于背景和前景都太亮或者太暗的图像非常有用,这种方法尤其是可以带来 X光 图像中更好的 骨骼 结构显示以及曝光过度或者曝光不足 照片 中更好的细节。这种方法的一个主要优势是它是一个相当直观的技术并且是 可逆 操作,如果已知均衡化 函数 ,那么就可以恢复原始的直方图,并且计算量也不大。这种方法的一个缺点是它对处理的数据不加选择,它可能会增加背景 噪声 的对比度并且降低有用 信号 的对比度。

我们先来看看相应的直方图和累积直方图,然后使用 OpenCV 进行直方图均衡化。

我们可以看出来直方图大部分在灰度值较高的部分,而且分布很集中。而我们希望直方图的分布比较分散,能够涵盖整个 x 轴。所以,我们就需要一个变换函数帮助我们把现在的直方图映射到一个广泛分布的直方图中,这就是直方图均衡化。

**限制对比度自适应性直方图均衡化 CLAHE **

在上边做的直方图均衡化会改变整个图像的对比度,但是在很多情况下,这样做的效果并不好。的确在进行完直方图均衡化之后,图片背景的对比度被改变了。但是你再对比一下两幅图像中雕像的面图,由于太亮我们丢失了很多信息。

原理:

为了解决这个问题,我们需要使用自适应的直方图均衡化 CLAHE (Contrast Limited Adaptive Histogram Equalization)。这种情况下,整幅图像会被分成很多小块,这些小块被称为“tiles”(在 OpenCV 中 tileGridSize默认是 8x8),然后再对每一个小块分别进行直方图均衡化(跟前面类似)。所以在每一个的区域中,直方图会集中在某一个小的区域中(除非有噪声干扰)。如果有噪声的话,噪声会被放大。为了避免这种情况的出现,要使用对比度限制。

CLAHE中,每一个像素邻域都要进行对比度限制,从而得到对应的变换函数,被用来降低AHE中噪声的增强,这主要是通过限制AHE中的对比度增强来实现的。像素周围邻域噪声的增强主要是由变换函数的斜率造成的,由于像素邻域的噪声与邻域的CDF成正比,因此也与邻域直方图在该中心像素位置的值成正比,CLAHE之所以能够限制对比度,是因为它在计算邻域的CDF之前在指定阈值处对直方图进行了修剪,如下图所示,这一做法不仅限制了CDF的斜率,也限制了变换函数的斜率,其中对直方图进行切割所使用的阈值,被称作修剪限制度(clip limit),这个参数不仅依赖于直方图的归一化,而且依赖于像素邻域的size大小,通常设为3到4之间。

对于每个小块来说,如果直方图中的 bin 超过对比度的上限的话,就把其中的像素点均匀分散到其他 bins 中,然后在进行直方图均衡化。最后,为了去除每一个小块之间“人造的”(由于算法造成)边界,再使用双线性差值,与原图做图层滤色混合操作(可选)。

实现:

参考文献:
网址: 直方图均衡化
Adaptive_histogram_equalization
书籍:《数字图像处理》《OpenCV-Python 中文教程》

‘捌’ 数字图像处理:直方图均衡化

首先在直方图的修整,有两种方法,一种是直方图均衡化,另外一种是直方图规定化,用起来的话第一种方法用的比较多,这里着重说一下第一种:直方图均衡化.

我们引入直方图,很大程度上是可以根据直方图的形态来去判断图像的质量,比如根据下图所示,会很快发现一张图片是过亮还是过暗,这篇文章会说一下直方图均衡化的原理,至于实现,以后有机会再说吧.

1.直方图均衡化

直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。

直方图均衡化方法的基本思想是对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减。从而达到清晰图像的目的。

一些理论的东西我们不谈,直接用一个例子来说一下,会更容易理解:

假设有一幅图像,共有64×64个像素,8个灰度级,各灰度级概率分布见下表 ,试将其直方图均匀化。

解题步骤:

1:确定图像的灰度级

在实际情况下,如果我们的图像是彩色,需要将其转换为灰度图像,其中的灰度级一般是0-255,这个题的灰度级只有8级,需要注意下

2:计算原始直方图的概率

统计每一个灰度在原始图像上的像素所占总体的比例,记为Pi

3:计算直方图概率的累加值S(i)

直到最后一个灰度级,总和为1

4: 根据公式求取像素映射关系.

这里的pix是指的灰度级,也就是(最大灰度级-最小灰度级)*累加概率+0.5后取整数

5: 灰度映射

找到了原图像和均衡化图像灰度的对应关系,对原图进行操作,将每个像素映射成新的像素

此时图像均衡化已经完成,当然你也可以再次统计灰度概率,观察一下结果。

‘玖’ python opencv怎么对彩图进行直方图均衡化

在某些情况下,一副图像中大部分像素的强度都集中在某一区域,而质量较高的图像中,像素的强度应该均衡的分布。为此,可将表示像素强度的直方图进行拉伸,将其平坦化

‘拾’ 直方图均衡化步骤

这个足够了 有问题再留言
clear all
%一,图像的预处理,读入彩色图像将其灰度化
PS=imread('s7.jpg'); %读入JPG彩色图像文件 ,注意路径
figure(1);subplot(2,2,1);imshow(PS);title('原图像灰度图');

%二,绘制直方图
[m,n]=size(PS); %测量图像尺寸参数
GP=zeros(1,256); %预创建存放灰度出现概率的向量
for k=0:255
GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置
end
figure(1);subplot(2,2,2);bar(0:255,GP,'g') %绘制直方图
title('原图像直方图')
xlabel('灰度值')
ylabel('出现概率')
%三,直方图均衡化
S1=zeros(1,256);
for i=1:256
for j=1:i
S1(i)=GP(j)+S1(i); %计算Sk
end
end
S2=round((S1*256)+0.5); %将Sk归到相近级的灰度
for i=1:256
GPeq(i)=sum(GP(find(S2==i))); %计算现有每个灰度级出现的概率
end
figure(1);subplot(2,2,4);bar(0:255,GPeq,'b') %显示均衡化后的直方图
title('均衡化后的直方图')
xlabel('灰度值')
ylabel('出现概率')
%四,图像均衡化
PA=PS;
for i=0:255
PA(find(PS==i))=S2(i+1); %将各个像素归一化后的灰度值赋给这个像素
end
figure(1);subplot(2,2,3);imshow(PA) %显示均衡化后的图像
title('均衡化后图像')
imwrite(PA,'PicEqual.bmp');

热点内容
我的世界如何做服务器 发布:2025-01-21 12:16:23 浏览:527
怎样建立算法 发布:2025-01-21 12:12:14 浏览:838
凸包的graham算法 发布:2025-01-21 12:00:00 浏览:146
jsonobject转java对象 发布:2025-01-21 12:00:00 浏览:306
macpython3默认 发布:2025-01-21 11:58:26 浏览:261
芒果服务器是什么意思 发布:2025-01-21 11:57:54 浏览:40
微信聊天服务器错误什么意思 发布:2025-01-21 11:56:13 浏览:460
linuxtomcat不能访问 发布:2025-01-21 11:47:11 浏览:394
刷新器需要什么配置 发布:2025-01-21 11:09:28 浏览:972
jedis源码 发布:2025-01-21 11:08:24 浏览:890