当前位置:首页 » 编程语言 » python对象长度

python对象长度

发布时间: 2022-12-09 09:59:24

python中len和length区别

python中len是length的缩写。Python中len表示的是len()函数,len()函数可以表示各种对象的长度,其功能是返回文本字符串中的字符数。

❷ python怎样创建具有一定长度和初始值的列表

1、首先,我们需要打开Python的shell工具,在shell当中新建一个对象member,对member进行赋值。

❸ python计算两个列表后的长度

方法1:使用 len()
Python len()方法返回对象(字符、列表、元组等)长度或项目个数。它提供了最常用和最简单的方法来查找任何列表的长度;这也是当今采用的最常规技术。
代码示例:使用len()方法来获取列表长度

❹ python数据分析2:DataFrame对象

DataFrame对象:二维表数据结构,由行列数据组成的表格

常用index表示行,columns表示列

'''

  语文  数学  英语

0  110  105    99

1  105    88  115

2  109  120  130

'''

# print(df.columns)  # Index(['语文', '数学', '英语'], dtype='object')

# print(df.index)  # Int64Index([0, 1, 2], dtype='int64')

# 遍历DataFrame数据的每一列

'''

0    110

1    105

2    109

Name: 语文, dtype: int64

0    105

1    88

2    120

Name: 数学, dtype: int64

0    99

1    115

2    130

Name: 英语, dtype: int64

'''

1.创建一个DataFrame对象

pandas.DataFrame(data,index,columns,dtype,)

# data表示数据,可以是ndarray数组,series对象、列表、字典等

# index表示行标签(索引)

# columns表示列标签(索引)

# dtype每一列数据的数据类型

# 用于复制数据

# 返回值DataFrame

通过二维数组创建成绩表

'''

  语文  数学  英语

0  110  105    99

1  105    88  115

2  109  120  130

'''

2.通过字典创建DataFrame对象

value值只能是一维数组或单个的简单数据类型

# 数组,则要求所有的数组长度一致

# 单个数据,每行都需要添加相同数据

'''

  语文  数学  英语    班级

0  110  105  109  高一7班

1  105    88  120  高一7班

2    99  115  130  高一7班

'''

'''

【DataFrame属性】

values 查看所有元素的值  df.values

dtypes 查看所有元素的类型  df.dtypes

index 查看所有行名、重命名行名  df.index    df.index=[1,2,3]

columns 查看所有列名、重命名列名  df.columns  df.columns=['语','数']

T 行列数据转换  df.T

head 查看前n条数据,默认5条                df.head()  df.head(10)

tail 查看后n条数据,默认5条                df.tail()  df.tail(10)

shape 查看行数和列数,[0]表示行,[1]表示列    df.shape[0]  df.shape[1]

info 查看索引,数据类型和内存信息    df.info

【DataFrame函数】

describe 查看每列的统计汇总信息,DataFrame类型  df.describe()

count    返回每一列中的非空值的个数              df.count()

sum      返回每一列和和,无法计算返回空值      df.sum()

max      返回每一列的最大值                df.max()

min      返回每一列的最小值                df.min()

argmax  返回最大值所在的自动索引位置        df.argmax()

argmin  返回最小值所在的自动索引位置        df.argmin()

idxmax  返回最大值所在的自定义索引位置      df.idxmax()

idxmin  返回最小值所在的自定义索引位置      df.idxmin()

mean    返回每一列的平均值                df.mean()

median  返回每一列的中位数                df.median()

var      返回每一列的方差                  df.var()

std      返回每一列的标准差  df.std()

isnull  检查df中的空值,空值为True,否则为False,返回布尔型数组  df.isnull()

notnull  检查df中的空值,非空值为True,否则为False,返回布尔型数组  df.notnull()

中位数又称中值,是指按顺序排列的一组数据中居于中间位置的数

方差用于度量单个随机变量的离散程序(不连续程度)

标准差是方差的算术平方根,反映数据集的离散程度

'''

3. 导入.xls或.xlsx文件

# pandas.read_excel(io,sheetname=0,header=0,names=None,index_col=None,usecols=None,squeeze=False,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skiprows=None,nrow=None,na_values=None,keep_defalut_na=True,verbose=False,parse_dates=False,date_parser=None,thousands=None,comment=None,skipfooter=0,conver_float=True,mangle_pe_cols=True,**kwds)

'''

io 字符串,xls或xlsx文件路径或类文件对象

sheet_name:None、字符串、整数、字符串行表或整数列表,默认值为0

    字符串用于工作表名称;整数为索引,表示工作表位置

    字符串行表或整数列表用于请求多个工作表,为None时则获取所有的工作表

    sheet_name = 0 第一个Sheet页中的数据作为DataFrame对象

    sheet_name = 1 第二个Sheet页中的数据作为DataFrame对象

    sheet_name = 'Sheet1' 名为Sheet1的Sheet页中的数据作为DataFrame对象

    sheet_name = [0,1,'Sheet3'] 第一个,第二个和名为Sheet3的Sheet页中的数据作为DataFrame对象

header:指定作为列名的行,默认值为0,即取第一行的值为列名。或数据不包含列名,则为header=None

names:默认值为None,要使用的列名列表

index_col:指定列为索引列,默认值为None,索引0是DataFrame对象的行标签

usecols:int、list或字符串,默认值为None

    如为None,则解析所有列

    如为int,则解析最后一列

    如为list列表,则解析列号和列表的列

    如为字符串,则表示以逗号分隔的Excel列字母和列范围列表

squeeze:布尔值,默认为False,如果解析的数据只包含一列,则返回一个Series

dtype:列的数据类型名称为字典,默认值为None

skiprows:省略指定行数的数据,从第一行开始

skipfooter:省略指定行数的数据,从尾部数的行开始

4.导入指定Sheet页的数据

# sheet_name=0表示第一个sheet页的数据,以此类推,如果不指定,则导入第一页

5.指定行索引导入Excel数据

'''

Empty DataFrame

Columns: []

Index: [1, 3, 5]

'''

# 导入第一列数据

'''

Empty DataFrame

Columns: []

Index: [1, 3, 5]

'''

❺ 利用Python进行数据分析笔记:3.1数据结构

元组是一种固定长度、不可变的Python对象序列。创建元组最简单的办法是用逗号分隔序列值:

tuple 函数将任意序列或迭代器转换为元组:

中括号 [] 可以获取元组的元素, Python中序列索引从0开始

元组一旦创建,各个位置上的对象是无法被修改的,如果元组的一个对象是可变的,例如列表,你可以在它内部进行修改:

可以使用 + 号连接元组来生成更长的元组:

元组乘以整数,则会和列表一样,生成含有多份拷贝的元组:

将元组型的表达式赋值给变量,Python会对等号右边的值进行拆包:

拆包的一个常用场景就是遍历元组或列表组成的序列:

*rest 用于在函数调用时获取任意长度的位置参数列表:

count 用于计量某个数值在元组中出现的次数:

列表的长度可变,内容可以修改。可以使用 [] 或者 list 类型函数来定义列表:

append 方法将元素添加到列表尾部:

insert 方法可以将元素插入到指定列表位置:
插入位置范围在0到列表长度之间

pop 是 insert 的反操作,将特定位置的元素移除并返回:

remove 方法会定位第一个符合要求的值并移除它:

in 关键字可以检查一个值是否在列表中;
not in 表示不在:

+ 号可以连接两个列表:

extend 方法可以向该列表添加多个元素:

使用 extend 将元素添加到已经存在的列表是更好的方式,比 + 快。

sort 方法可以对列表进行排序:

key 可以传递一个用于生成排序值的函数,例如通过字符串的长度进行排序:

bisect.bisect 找到元素应当被插入的位置,返回位置信息
bisect.insort 将元素插入到已排序列表的相应位置保持序列排序

bisect 模块的函数并不会检查列表是否已经排序,因此对未排序列表使用bisect不会报错,但是可能导致不正确结果

切片符号可以对大多数序列类型选取子集,基本形式是 [start:stop]
起始位置start索引包含,结束位置stop索引不包含

切片还可以将序列赋值给变量:

start和stop可以省略,默认传入起始位置或结束位置,负索引可以从序列尾部进行索引:

步进值 step 可以在第二个冒号后面使用, 意思是每隔多少个数取一个值:

对列表或元组进行翻转时,一种很聪明的用法时向步进值传值-1:

dict(字典)可能是Python内建数据结构中最重要的,它更为常用的名字是 哈希表 或者 关联数组
字典是键值对集合,其中键和值都是Python对象。
{} 是创建字典的一种方式,字典中用逗号将键值对分隔:

你可以访问、插入或设置字典中的元素,:

in 检查字典是否含有一个键:

del 或 pop 方法删除值, pop 方法会在删除的同时返回被删的值,并删除键:

update 方法将两个字典合并:
update方法改变了字典元素位置,对于字典中已经存在的键,如果传给update方法的数据也含有相同的键,则它的值将会被覆盖。

字典的值可以是任何Python对象,但键必须是不可变的对象,比如标量类型(整数、浮点数、字符串)或元组(且元组内对象也必须是不可变对象)。
通过 hash 函数可以检查一个对象是否可以哈希化(即是否可以用作字典的键):

集合是一种无序且元素唯一的容器。

set 函数或者是用字面值集与大括号,创建集合:

union 方法或 | 二元操作符获得两个集合的联合即两个集合中不同元素的并集:

intersection 方法或 & 操作符获得交集即两个集合中同时包含的元素:

常用的集合方法列表:

和字典类似,集合的元素必须是不可变的。如果想要包含列表型的元素,必须先转换为元组:

❻ python常见数据类型

一,python整数类型所表示的数据。

1,一般用以表示一类数值:所有正整数,0和负整数;

2,整型作为最常用的,频繁参与计算的数据类型,在python3.5中解释器会自动在内存中创建-5-3000之间的(包含5,不包含3000)整型对象,也就是说在该范围内,相等都是同一个已经创建好的整型对象。范围之外的即使相等也表示不同对象,该特性随python版本而改变,不要过于依赖。

3,bool型继承了int型,他是int的子类。

4,Python2中有长整型long,数值范围更大,在python3中已取消,所有整型统一由int表示。

5,参与所有数值计算,数学运算,科学计算。这也是所有编程语言都有的数据类型,因为编程语言生而需要模拟人的思维,借助数学方式,自动计算、更好的解决大量重复性的事务,因此数值类型、整数类型在编程语言中不可或缺。

6,支持二进制(0b\0B开头),十进制,八进制(0o\0O),十六进制(0x\0X)

二,python整数和浮点型支持常规的数值运算

整数和浮点数都可参与的运算:+ - * / %(取余) //(整除) **(幂)

Python字符型:

python字符型表示的数据:
python3支持Unicode编码,由字母、数字和符号组成的形式就叫字符串,更接近或者相同与人们文字符号表示,因此在信息表示和传递时它也是最受认可的形式。在程序编写中也是非常常用,对应的可操作的方法也很多,很有意思。
字符串不可被修改,可以拼接等方法创建新字符串对象;
支持分片和下标操作;a[2:]
支持+拼接,*重复操作和成员关系in/not in;
表示形式:用单引号双引号包含起来的符号;a = str(‘sdfsdfsdf’) 或 r’\t\nabcd’ 原始字符,Bytes:b’abcd’;
6,字符串属于不可变数据类型,内部机制为了节省空间,相同的两个字符串表示相同的一个对象。a = ‘python’ b = ‘python’ a is b :True

二, 字符串支持的运算方法

1,capitalize() :首字母大写后边的字母小写 a = ‘abcd’ b = a.capitalize() b:Abcd

2,casefold() lower():字母转换为全小写

3,center(width,fillchar) :居中,width填补的长度;fillchar添加的字符

a = a.center(10,’_’) //’____abcd____’ 默认无fillchar填充空格

4,count(sub,star,end) :字母计数:sub要查询的字符

5,encode(encoding=’utf-8’,errors=’strict’) 设置编码

Errors :设置错误类型

6,endswith(suffix,star,end) : 若以suffix结尾返回True

7,expandtabs(8) :设置字符串中tab按键符的空格长度:’\tabcde’

8,find(sub,star,end) : 返回指定范围内的字符串下标,未找到返回-1

9,index(sub,star,end) :返回指定范围字符串下标未找到抛出异常

10,isalnum() :判断字符串是否是字母或数字,或字母和数字组合

11,isalpha() :判断是否全是字母

12,isdecimal() :判断字符串是否是十进制数值

13,isdigit() :判断字符串是否是数字

14,isidentifier() :判断字符串中是否包含关键字

15,islower() :判断是否全小写

16,isnumeric() :判断全是数字

17,isspace() :判断是否是空格

18,isupper() 判断是否大写

19,istitle() :判断是否首字母大写

20,join(iterable) :把可迭代对象用字符串进行分割:a.join(‘123’)

21,ljust(width,fillchar);rjust() :左对齐右对齐

22, upper() :将字符串改为大写

23,split(sep=None,maxsplit=-1) :分割一个字符串,被选中字符在字符串中删除

‘ab1cd1efg’.split(‘1’) :[‘ab’,’cd’,’efg’]

三,字符串格式化:按照规格输出字符串

format(*args,**kwargs) :args位置参数,kwargs关键字参数

‘{0:.1f}’.format(123.468) :格式化参数,小数点后保留1位四舍五入

四,字符串操作符%

1,%s :格式化字符串 ‘abcd%sdef’%’dddd’

2,%d:格式化整数

3,%o格式化无符号八进制

4,%x格式化无符号十六进制

5,%f格式化定点数

6, %e: 科学计数法格式化定点数

7,%g 根据值大小自动选%f,%e

8, %G E X :大写形式

五,格式化辅助命令:

m.n :m最小总宽度,n小数点后位数:’%12.4f’%23456.789

六,转义字符:字符串前r避免转义:r’\nhello\thi’

\n:换行符

\t:横向制表符

\':'

\":"

\b:退格符

\r:回车

\v:纵向制表符

\f:换页符

\o,\x:八进制和十六进制

\0:空字符串

Python列表list

一,Python的列表list类型表示的数据:

Python列表在cpython中被解释为长度可变的数组,用其他对象组成的连续数组。

列表中元素可以是相同或不同的数据类型;
当列表元素增加或删除时,列表对象自动进行扩展或收缩内存,保证元素之间没有缝隙,总是连续的。
Python中的列表是一个序列,也是一个容器类型
创建列表:a = []; b = [1,’python’]; c = list(); d = list((1,3,4,5))
支持切片操作list[start,stop,step]
python列表常用方法
1,append添加单个元素:list.append(object); //a.append(‘python’)

2,extend添加可迭代对象: list.extend(iterable); //a.extend(‘abcde’/[1,2,3])

3,insert 插入元素:list.insert(index,object): 在index下标前插入元素//a.insert(2,’python’)

4,clear 清空所有元素:list.clear() //a.clear()

5,pop 删除并返回一个元素:list.pop(index) //默认删除默认一个元素

remove 删除指定元素:list.remove(v) ,v元素不存在报错 //a.remove(‘c’)
7,count 返回这个值在列表中数量:list.count(value)

8, 浅拷贝一个新列表:list.()

9,sort:排序list.sort(reverse=False/True) :默认升序

排序函数:sorted(list)

10,reverse: 原地翻转:list.reverse()

11,index(value,star,stop) :指定范围内该值下标:list.index(2,0,5)

列表元素访问:
下标访问:list[1]
For循环遍历
通过下标修改元素:list[2 ] = ‘hello’
列表常用运算符:
1,比较运算符:从第一个元素开始对比

2,+ 拼接一个新列表:l1+ l2

3, 重复操作符:* ,多个列表拼接

成员关系操作符:in/ not in
逻辑运算符:and not or
列表常用的排序方法:
冒泡排序;选择排序;快速排序;归并排序

Python元组tuple

一,Python元组tuple数据类型表示的数据:

元组是受到限制的、不可改变的列表;
可以是同构也可以是异构;
元组是序列类型、是可迭代对象,是容器类型。
元组的创建: a = (1,2,3)或a=1,2,3; b = tuple(); c = tuple(iterable)
支持切片操作tuple[start,stop,step]

二,python元组常用方法

1,index(value,star,stop) :指定范围内该值下标:tuple.index(2,0,5)

2,count(value) :值出现次数

三,支持运算:

1,比较运算符:从第一个元素开始对比

2,+ 拼接一个新元组:l1+ l2

3, 重复操作符:* ,多个元组拼接

4成员关系操作符:in/ not in

逻辑运算符:and not or
四,元组的访问

下标操作;
For循环遍历访问。

Python字典类型

一,Python字典dict表示的数据:{key:value}

可根据关键字:键快速索引到对应的值;
字典是映射类型,键值对一一对应关系,不是序列;
字典元素是无序的;
字典是可迭代对象,是容器类型;
字典的创建:k = {}; k1={‘keyword’:object}; k2 = dict();
K3 = dict(mapping); dict=(iterable)

二,字典的访问:

通过key:k[‘key’]

修改key对应的值:K[‘key’] = value

For循环遍历出来的是key;

For循环键值对:for I in d.items():

For 循环enumerate: for k,v in enumerate(k1):

In/not in 成员关系查询键不支持查值

三,字典常用方法

get(key,de):获取值:k.get(key,de) //若不存在则默认输出de
pop(k,de):删除一个键值对,不存在输出de,未设置报错;
keys() :返回字典所有key组成的序列:list(k.keys()) [1,2,3];
values():返回字典所有value组成的序列:list(k.values())
items():返回键值对组成的元组为元素的序列:(类set)list(k.items())
update(e):更新字典:e可是字典或两元素组成的单位元素序列:e=[(5,6),(7,8)];
k.update(e)

clear():清空字典;
popitem()删除某个键值对,若字典为空则报错
() :浅拷贝
10, fromkeys(iterable,value=None):从可迭代对象创建字典

{}.fromkeys([1,2,3]) -----{1:None,2:None,3:None}

11,setdefault(k,d=None) :若key不存在则生成一个键值对

k.setdefault(‘keyword’)

Python 集合set

集合表示的数据:
多个元素的无序组合,集合是无序的,集合元素是唯一的;
字典的键是由集合实现的;
集合是可迭代对象
集合创建:s = {1,2}; s1 = set(); s2 = set(iterable)
集合元素的访问:
For 循环将集合所有元素全部访问一遍,不重复

常用方法:
add(object):s.add(‘hi’) 向集合添加一个元素
pop() :弹栈,集合为空则报错:删除任意一个元素;
clear():清空集合,返回一个空集合对象;
remove(object):删除一个元素,不存在和报错:s.remove(‘hi’)
update(集合):更新另一个集合,元素不存在则不更新;
() :浅拷贝
集合的运算:
交集:s1&s2;
差集,补集:s1-s2;
并集:s1|s2;
Issubset():判断是否是子集:s1.issubset(s2) s1是否s2的集合子集
Issuperset():判断是否是父集:s1.issuperset()
不可变集合:
Frozenset():返回一个空的不可变集合对象

Frozenset(iterable):

S = frozenset(iterable)

Python序列类型共同特性

一,序列类型共同特性

python序列类型有:str字符串,list列表,tuple元组
都支持下标索引,切片操作;
下标都是从0开始,都可通过下标进行访问;
拥有相同的操作符
二,支持的函数:

len(obj):返回对象长度;
list(iterable):将可迭代对象转为列表;
tuple(iterable):将可迭代对象转为元组;
str(ojb):将任何对象转为字符串形式;
max(iterable): python3中元素要是同类型,python2中元素可异构:max([‘a’,1])
min(iterable):和max类似;
sum(iterable,star=0),求可迭代对象和,默认star为0,元素不能为字符串
sorted(iterable,key=None,reverse=False)
s=[(‘a’,3),(‘b’,2),(‘c’,9)]

sorted(s,key=lambda s:s[1]) //按照数字排序

reversed(sequence):翻转序列,返回迭代器
enumerate(iterable):返回enumerate对象,其元素都是一个元组(下标,值)
zip(iter1,iter2): zip([1,2],[3,4]) ----[(1,3),(2,4)]

序列类型的切片操作:

Slice:

L[index]; 访问某个元素;

L[1:4]; 区间

L[star:stop:step]; 设置步长取区间元素

❼ python定义模型

学python的人都知道,python中一切皆是对象,如class生成的对象是对象,class本身也是对象,int是对象,str是对象,dict是对象...。所以,我很好奇,python是怎样实现这些对象的?带着这份好奇,我决定去看看python的源码,毕竟源码才是满足自己好奇心最直接的方法。

在object.h文件中,定义了两种数据结构PyObject和PyVarObject,代码如下:

1 #define PyObject_HEAD 2 Py_ssize_t ob_refcnt; 3 struct _typeobject *ob_type; 4 5 #define PyObject_VAR_HEAD 6 PyObject_HEAD 7 Py_ssize_t ob_size; 8 9 typedef struct _object {10 PyObject_HEAD11 } PyObject;12 13 typedef struct {14 PyObject_VAR_HEAD15 } PyVarObject;

这两种数据结构分别对应python的两种对象:固定长度对象和可变长度对象。python中的所有对象都属于这两种对象中的一种,如int,float是固定长度对象,list,str,dict是可变长度对象。从上面两种对象数据结构定义来看,可变长度对象和固定长度对象的头都是PyObject结构体,也就是说python中所有对象的开头都包含这个结构体,并且可以用PyObject *指针来访问任何对象,这种访问对象的方法在python的源码中随处可见。PyObject结构体包含两个成员,ob_refcnt和ob_type指针。ob_refcnt用来表示对象被引用的次数,当ob_refcnt == 0时,这个对象会被立即销毁;ob_type指针指向了一个_typeobject类型的结构体,表示对象所属的类型,也就是生成该对象的类型,这其实很类似于面向对象中类与实例的关系,PyObject是某个类的实例,ob_type表示这个类。但与面向对象不同的是,ob_type本身也是个对象,我们来看下_typeobject的定义:

1 typedef struct _typeobject { 2 PyObject_VAR_HEAD 3 const char *tp_name; /*类型名 */ 4 Py_ssize_t tp_basicsize, tp_itemsize; /* 实例化对象的大小 */ 5 6 /* 标准方法 */ 7 8 destructor tp_dealloc; 9 printfunc tp_print;10 getattrfunc tp_getattr;11 setattrfunc tp_setattr;12 cmpfunc tp_compare;13 reprfunc tp_repr;14 15 /* 标准类(数值类,列表类,dict类)方法*/16 17 PyNumberMethods *tp_as_number;18 PySequenceMethods *tp_as_sequence;19 PyMappingMethods *tp_as_mapping;20 21 /* 其它标准方法*/22 23 hashfunc tp_hash;24 ternaryfunc tp_call;25 reprfunc tp_str;26 getattrofunc tp_getattro;27 setattrofunc tp_setattro;28 ...
29 } PyTypeObject;

从上面定义来看,_typeobject的开头也包含了PyObject结构体,所以它也是一个对象,既然它也是一个对象,那么按照面向对象的理解,它又是谁来生成的呢?答案是所有PyTypeObject对象都是通过PyType_Type来生成的,包括PyType_Type本身,因为PyType_Type也是PyTypeObject对象,有点绕。PyType_Type的定义是通过将PyType_Type声明为全局静态变量实现的,具体如下:

1 PyTypeObject PyType_Type = { 2 PyVarObject_HEAD_INIT(&PyType_Type, 0) 3 "type", /* tp_name */ 4 sizeof(PyHeapTypeObject), /* tp_basicsize */ 5 sizeof(PyMemberDef), /* tp_itemsize */ 6 (destructor)type_dealloc, /* tp_dealloc */ 7 0, /* tp_print */ 8 0, /* tp_getattr */ 9 0, /* tp_setattr */10 0, /* tp_compare */11 (reprfunc)type_repr, /* tp_repr */12 0, /* tp_as_number */13 0, /* tp_as_sequence */14 0, /* tp_as_mapping */15 (hashfunc)_Py_HashPointer, /* tp_hash */16 (ternaryfunc)type_call, /* tp_call */17 0, /* tp_str */18 (getattrofunc)type_getattro, /* tp_getattro */19 (setattrofunc)type_setattro, /* tp_setattro */20 0, /* tp_as_buffer */21 ...22 }

从PyType_Type定义来看,ob_type被初始化为它自己的地址,所以PyType_Type的类型就是自己。从python源码实现来看,所有PyTypeObject的ob_type都会指向PyType_Type对象,所以PyType_Type是所有类型的类型,称之为元类。python中定义了很多内建的类型对象,如PyInt_Type (int类型),PyStr_Type (str类型),PyDict_Type(dict类型) 类型对象,下面看下PyInt_Type类型的定义:

1 PyTypeObject PyInt_Type = { 2 PyVarObject_HEAD_INIT(&PyType_Type, 0) 3 "int", 4 sizeof(PyIntObject), 5 0, 6 (destructor)int_dealloc, /* tp_dealloc */ 7 (printfunc)int_print, /* tp_print */ 8 0, /* tp_getattr */ 9 0, /* tp_setattr */10 (cmpfunc)int_compare, /* tp_compare */11 (reprfunc)int_to_decimal_string, /* tp_repr */12 &int_as_number, /* tp_as_number */13 0, /* tp_as_sequence */14 0, /* tp_as_mapping */15 (hashfunc)int_hash, /* tp_hash */16 0, /* tp_call */17 ...18 };

从PyInt_Type定义来看,它主要包含了int数据类型相关的方法。PyInt_Type类型对象的初始化和PyType_Type类型类似,PyInt_Type类型的定义也是通过全局静态变量的方式实现的,除了PyInt_Type了下,所有python内建类型都是以这种方式定义的。这些类型产生的对象都会共享这些类型对象,包括这些类型定义的方法。

在python中,怎样查看对象的类型呢?有两种方法,一种是直接type:

1 >>> x = 12 >>> type(x)3 <type 'int'>

另一种是通过对象的__class__属性:

1 >>> x = 12 >>> type(x)3 <type 'int'>4 >>> x.__class__5 <type 'int'>

现在来看看int,str,dict这些类型的类型:1 <type 'int'>2 >>> type(int)3 <type 'type'>4 >>> type(str)5 <type 'type'>6 >>> type(dict)7 <type 'type'>8 >>> type(type)9 <type 'type'>从这个输出来看,int,str,dict这些类型的类型都是type,这也印证了前面说的,所有类型都是通过元类type生成的。

❽ python如何统计列表的长度

参考代码:

list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5 ];
list3 = ["a", "b", "c"];
len(list1)
len(list2)
len(list3)

Python支持列表切割(list slices),可以取得完整列表的一部分。支持切割操作的类型有str, bytes, list, tuple等。它的语法是...[left:right]或者...[left:right:stride]。假定nums变量的值是[1, 3, 5, 7,],那么下面几个语句为真:

nums[2:5] == [5, 7] 从下标为2的元素切割到下标为5的元素,但不包含下标为5的元素。

nums[1:] == [3, 5, 7] 切割到最后一个元素。

nums[:-3] == [1, 3, 5, 7] 从最开始的元素一直切割到倒数第3个元素。

nums[:] == [1, 3, 5, 7] 返回所有元素。改变新的列表不会影响到nums。

nums[1:5:2] == [3, 7] 从下标为1的元素切割到下标为5的元素但不包含下标为5的元素,且步长为2。

(8)python对象长度扩展阅读:

Python 是一门有条理的和强大的面向对象的程序设计语言,类似于Perl, Ruby, Scheme, Java。

Python在设计上坚持了清晰划一的风格,这使得Python成为一门易读、易维护,并且被大量用户所欢迎的、用途广泛的语言。

设计者开发时总的指导思想是,对于一个特定的问题,只要有一种最好的方法来解决就好了。这在由Tim Peters写的Python格言(称为The Zen of Python)里面表述为:There should be one-- and preferably only one --obvious way to do it. 这正好和Perl语言(另一种功能类似的高级动态语言)的中心思想TMTOWTDI(There's More Than One Way To Do It)完全相反。

Python的作者有意的设计限制性很强的语法,使得不好的编程习惯(例如if语句的下一行不向右缩进)都不能通过编译。其中很重要的一项就是Python的缩进规则。

❾ python数组要先定义长度吗

这个是根据实际情况来决定的,如果你的数组是追加一个元素的可以不用定义长度,如果你初始化一个列表然后要修改其中的值的话,就要定义长度了。

拓展资料

Python, 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明,第一个公开发行版发行于1991年。

Python是纯粹的自由软件, 源代码和解释器CPython遵循 GPL(GNU General Public License)协议。Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进。

Python具有丰富和强大的库。能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。

❿ python size和length的区别

  1. python size:针对标签对象元素,比如数html页面有多少个段落元素,那么此时的$("p").size() == $("p").length。如下图具体代码:

热点内容
视频聊天室源码php 发布:2025-01-21 01:39:29 浏览:938
游戏脚本xp 发布:2025-01-21 01:25:48 浏览:209
cfa建模需要什么电脑配置 发布:2025-01-21 01:16:41 浏览:96
配置获取异常怎么办 发布:2025-01-21 01:16:29 浏览:641
植发都加密吗 发布:2025-01-21 01:16:28 浏览:735
工商保障卡原始密码是什么 发布:2025-01-21 01:09:33 浏览:786
sqlserver2012sp 发布:2025-01-21 01:06:23 浏览:888
惊变在线看ftp 发布:2025-01-21 01:06:20 浏览:233
用近似归算法 发布:2025-01-21 00:51:56 浏览:517
php显示数据库中图片 发布:2025-01-21 00:44:34 浏览:146