当前位置:首页 » 编程语言 » 量化投资以python为工具

量化投资以python为工具

发布时间: 2022-12-06 08:28:34

A. 用python做量化交易要学多久

5个月。

python凭借其突出的语言优势与特性,已经融入到各行各业的每个领域。一般来说,python培训需要脱产学习5个月左右,这样的时长才能够让学员既掌握工作所需的技能,还能够积累一定的项目经验。当然如果你想要在人工智能的路上越走越远,则需要不断的积累和学习。

python培训的5个月时间里,有相当大一部分时间是在实战做项目,第一阶段是为期一个月学习python的核心编程,主要是python的语言基础和高级应用,帮助学员获得初步软件工程知识并树立模块化编程思想。学完这一阶段的内容,学员已经能够胜任python初级开发工程师的职位。

(1)量化投资以python为工具扩展阅读:

Python开发基础课程内容包括:计算机硬件、操作系统原理、安装linux操作系统、linux操作系统维护常用命令、Python语言介绍、环境安装、基本语法、基本数据类型、二进制运算、流程控制、字符编码、文件处理、数据类型、用户认证、三级菜单程序、购物车程序开发、函数、内置方法、递归、迭代器、装饰器、内置方法、员工信息表开发、模块的跨目录导入、常用标准库学习,b加密 e正则logging日志模块等,软件开发规范学习,计算器程序、ATM程序开发等。

B. 金融工程,量化投资学什么软件好Python还是Matlab

个人觉得还是都会比较好。技多不压身。量化投资用Matlab 和 C++,一个建模一个执行,足够了。实在不爱用Matlab的话,R和Python也行。

选择python推荐可以阅读:《量化投资:以python为工具》主要讲解量化投资的思想和策略,并借助Python 语言进行实战。《量化投资:以Python为工具》一共分为5 部分,第1 部分是Python 入门,第2 部分是统计学基础,第3 部分是金融理论、投资组合与量化选股,第4 部分是时间序列简介与配对交易,第5 部分是技术指标与量化投资。《量化投资:以Python为工具》首先对Python 编程语言进行介绍,通过学习,读者可以迅速掌握用Python 语言处理数据的方法,并灵活运用Python 解决实际金融问题;其次,向读者介绍量化投资的理论知识,主要讲解量化投资所需的数量基础和类型等方面;最后讲述如何在Python 语言中构建量化投资策略。

选择MATLAB推荐阅读:《问道量化投资:用MATLAB来敲门》主要讲述以MATLAB为分析工具的量化投资,由“MATLAB入门”、“MATLAB量化投资基础”和“MATLAB量化投资相关函数详解”3篇组成。入门篇让零编程基础的读者快速掌握强大的数值计算和模拟分析工具MATLAB;量化投资基础篇简要介绍相关的投资策略及模型,重点讲述MATLAB中的模型实现及应用;函数详解篇对MATLAB的金融工具箱、衍生品工具箱和固定收益工具箱中的全部函数一一进行详解,以帮助读者快速掌握这些函数。

C. 《Python与量化投资从基础到实战》pdf下载在线阅读,求百度网盘云资源

《07 Python股票量化投资课程(完结)》网络网盘资源免费下载

链接:https://pan..com/s/1MgFE6VMeR8H6YkS2jxEZmw

?pwd=zxcv 提取码:zxcv

07 Python股票量化投资课程(完结)|09课后大作业|08第八课资料|07第七课资料|06第六课资料|05第五课资料|04第四课资料|03第三课资料|02第二课资料|01第一课资料|25人工智能与量化投资(下).mp4|24人工智能与量化投资(上).mp4|23实盘交易(下).mp4|22实盘交易(中).mp4|21实盘交易(上).mp4

D. 量化投资 用python好 还是c++

Python是非常适合做quant类工作的语言,本身就是科学计算方面的统治级语言,现在加入了IPython,pandas等重量级神器,为Quant类工作量身定做,而且仍在飞速发展中,以后会越来越重要。

关于其他语言,首先介绍一下我自己最喜欢的一个比较小众的组合,Mathematica+Java/Scala。 Mathematica的优点在于:本身提供函数式的编程语言,表达能力非常强大,比如Map/Rece是标配,很多时候不需要去做烦人的for循环或下标控制,排版经常可以直接照数学公式原样输入,即直观又不容易写错;代码和输出混排的排版方式使得建模时的演算和推理过程非常流畅,甚至还可以直接生成动画,对于找直观理解非常有帮助(这几点分别被IPython和R偷师了一部分)。Mathematica的缺点在于对金融类的时间序列数据没有很好的内建支持,使得存储和计算都会比较低效,因此需要用内嵌Java的方式来补足,对于数据格式或性能敏感的操作都可以用Java/Scala实现。这个组合在我心目中无出其右,不论是快速建模,还是建模转生产,都远远领先于其他选择。但Mathematica的商用授权很贵,如果公司本身不认可的话很难得到支持,这是最致命的缺陷。另外随着Python系的逐渐成熟,领先优势在逐渐缩小,长远看Python的势头更好一些。

其他答案里也列举了不少其他语言,我自己既做Quant的工作,也做软件开发的工作,这里想从一个软件工程师的角度,说说我的理解。平时工作中会和一些偏Quant背景的人合作,很容易发现建模能力好的人往往在计算机方面基础比较薄弱(因为以前的训练重点不在这里)。他们也可以快速学习掌握一种像C++,Java这样的语言,实现很多必要的功能。但是一方面这些语言陡峭的学习曲线和繁琐的开发步骤会给他们真正要做的工作增加不必要的负担,另一方面一旦涉及到性能敏感的情景,他们对计算机体系结构缺乏理解的缺点就容易暴露,比如说很可能他们没有计算复杂度,内存碎片,cache miss,甚至多线程等概念,导致写出的程序存在相当大的隐患。

即使是计算机功底扎实,如果每天的工作需要在C++,Python,R/Matlab,甚至一众脚本语言之前来回切换,思维负担也会非常重,人的精力是有限的,很难同时兼顾数学建模和底层代码调试这种差距巨大的工作。长期发展下去最可能的结果就是要么远离建模,专心做生产环境开发,要么远离生产环境,专心建模。这种局面显然不论对个人还是团队都是有很大弊端的。

如果深入思考这个问题,相信不难得出结论,对于Quant来说,C++这种相当面向机器的语言肯定不是最佳选择。的确在历史上,它比更面向机器的C已经友好了很多,但是在计算机技术飞速发展的今天,如果还需要Quant大量使用C++做建模类的工作显然是很遗憾的事情。设想一下你拿到一份股票数据,不论你是想分析价格走势,成交量分布,还是波动性,第一件要做的事一定是画出图来看看,有一个直观认识。如果你的工具是C++,肯定有很多时间花在编译,调试,再编译的过程上,好容易能解析文件了,接下来怎么算移动平均?怎么算波动性?全都要自己写代码。再然后怎么画图?这整个工作流简直惨不忍睹,这些问题浪费掉你大部分精力,而他们全部和你真正感兴趣的工作毫无关系。所以如果你是一个数理金融等背景的新人打算开始Quant生涯,在决定是否要投资到这项重量级技术上时需要慎重,即便它目前的市场定价可能仍在峰值。相比之下我认为Python会是更理想的选择,即能很好的完成建模工作,也可以训练一定的编程技巧,使你在必要时也能胜任一些简单的C++工作。

最后同意 @袁浩瀚,不要拘泥于语言,不论学习那一种,对其他的语言还是要抱有开放的心态。另外世界变化很快,你会发现单一的语言分类方式其实是没有意义的,每一门语言在发展过程中都会逐渐吸收其他语言的特性,比如Python本身就既有C/C++/Java那样命令式的特点,也有函数式的特点,像pandas甚至还提供类似SQL的使用方式,在其他语言或系统里也都或多或少包含了不同的特点,可以在学习过程里慢慢体会。

E. Python中if(a100)表示的是什么意思

把前面 写上来啊, 是个判断。a100为真的话,然后执行后面的。把前面 写上来,才知道具体你问的。不过 就是个简单判断。基础你可以参考一些文档 :
看个例子就明白了 这种判断的很多 。把自己搜集过的 拿来供你参考。虽然别人的,但是希望对大家有帮助 。 这是比较经典的集合吧,建议 你 浏览一遍 ,看完就精通了
https://545c.com/file/24889670-428508207入门必不可以少吧 《python核心编程》,建议找里面两个例子运行下,不要贪多。一两个例子弄懂就行。https://545c.com/file/24889670-437716755 python中文手册 翻译的原汁原味的 必看很多书强100倍
https://545c.com/file/24889670-437716753 python学习手册 看点最权威的。致敬努力的你 看点基础的 上面这词儿都有基本语法,系统过一下https://545c.com/file/24889670-437716751 python 简明教程 看点最经典容易上手的 。https://545c.com/file/24889670-437716678 python 初学教程https://545c.com/file/24889670-437716749 python 核心编程 https://545c.com/file/24889670-437716630 python 入门指南,没有这个更 清晰 更应该看 解决基础的问题 语法 结构等
https://545c.com/file/24889670-437716669 python 编程入门经典 这个里面例子 拿来直接个加了用 就行 很多循环什么的
https://545c.com/file/24889670-437716642 python help 自己出品的帮助文件,手边天天看 很多你这类的 就可以解决啦
https://545c.com/file/24889670-437716640 python 之路 一天天来 入门最重要
ppt看 大概,书籍看总览,一次学会 python,弄几个例子不用太多 运行下就行了
https://545c.com/file/24889670-428508258 python基础培训.ppt
https://545c.com/file/24889670-428508207 python 核心编程
https://545c.com/file/24889670-437716623 《Python与量化投资从基础到实战》PDF及代码+《量化投资以Python为工具》PDF及代码.rar 代码直接用 书直接看
高阶的 这里是 酌情参考
https://545c.com/file/24889670-437716495 《Python编程实战:运用设计模式、冰法和程序库创建高质量程序》迷你书.pdf
https://545c.com/file/24889670-437716638 python 网络爬虫 学爬虫的福音,拿来就能用 实践是最好的老师
https://545c.com/file/24889670-437716627 python 爬虫 学习系列教程 学爬虫的福音,拿来就能用

F. python实现资产配置(1)----Markowitz 投资组合模型

现假设有A, B, C, D, E五只股票的收益率数据((第二日收盘价-第一日收盘价)/第一日收盘价)), 如果投资人的目标是达到20%的年收益率,那么该如何进行资产配置,才能使得投资的风险最低?

更一般的问题,假设现有x 1 ,x 2 ,...,x n , n支风险资产,且收益率已知,如果投资人的预期收益为goalRet,那么该如何进行资产配置,才能使得投资的风险最低?

1952年,芝加哥大学的Markowitz提出现代资产组合理论(Modern Portfolio Theory,简称MPT),为现代西方证券投资理论奠定了基础。其基本思想是,证券投资的风险在于证券投资收益的不确定性。如果将收益率视为一个数学上的随机变量的话,证券的期望收益是该随机变量的数学期望(均值),而风险可以用该随机变量的方差来表示。

对于投资组合而言,如何分配各种证券上的投资比例,从而使风险最小而收益最大?

答案是将投资比例设定为变量,通过数学规划,对每一固定收益率求最小方差,对每一个固定的方差求最大收益率,这个多元方程的解可以决定一条曲线,这条曲线上的每一个点都对应着最优投资组合,即在给定风险水平下,收益率最大,这条曲线称作“有效前沿” (Efficient Frontier)。

对投资者而言,不存在比有效前沿更优的投资组合,只需要根据自己的风险偏好在有效前沿上寻找最优策略。
简化后的公式为:

其中 p 为投资人的投资目标,即投资人期待的投资组合的期望值. 目标函数说明投资人资产分配的原则是在达成投资目标 p 的前提下,要将资产组合的风险最小化,这个公式就是Markowitz在1952年发表的'Portfolio Selection'一文的精髓,该文奠定了现代投资组合理论的基础,也为Markowitz赢得了1990年的诺贝尔经济学奖. 公式(1)中的决策变量为w i , i = 1,...,N, 整个数学形式是二次规划(Quadratic Programming)问题,在允许卖空的情况下(即w i 可以为负,只有等式约束)时,可以用拉格朗日(Lagrange)方法求解。

有效前缘曲线如下图:

我们考虑如下的二次规划问题

运用拉格朗日方法求解,可以得到

再看公式(1),则将目标函数由 min W T W 调整为 min 1/2(W T W), 两问题等价,写出的求解矩阵为:

工具包: CVXOPT python凸优化包
函数原型: CVXOPT.solvers.qp(P,q,G,h,A,b)

求解时,将对应的P,q,G,h,A,b写出,带入求解函数即可.值得注意的是输入的矩阵必须使用CVXOPT 中的matrix函数转化,输出的结果要使用 print(CVXOPT.solvers.qp(P,q,G,h,A,b)['x']) 函数才能输出。

这里选取五支股票2014-01-01到2015-01-01的收益率数据进行分析.
选取的五支股票分别为: 白云机场, 华夏银行, 浙能电力, 福建高速, 生益科技

先大体了解一下五支股票的收益率情况:

看来,20%的预期收益是达不到了。

接下来,我们来看五支股票的相关系数矩阵:

可以看出,白云机场和福建高速的相关性较高,因为二者同属于交通版块。在资产配置时,不利于降低非系统性风险。

接下来编写一个MeanVariance类,对于传入的收益率数据,可以进行给定预期收益的最佳持仓配比求解以及有效前缘曲线的绘制。

绘制的有效前缘曲线为:

将数据分为训练集和测试集,并将随机模拟的资产配比求得的累计收益与测试集的数据进行对比,得到:

可以看出,在前半段大部分时间用Markowitz模型计算出的收益率要高于随机模拟的组合,然而在后半段却不如随机模拟的数据,可能是训练的数据不够或者没有动态调仓造成的,在后面写策略的时候,我会加入动态调仓的部分。

股票分析部分:

Markowitz 投资组合模型求解

蔡立专:量化投资——以python为工具. 电子工业出版社

G. python量化投资是什么

量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。从全球市场的参与主体来看,按照管理资产的规模,全球排名前四以及前六位中的五家资管机构,都是依靠计算机技术来开展投资决策,由量化及程序化交易所管理的资金规模在不断扩大。
python是一种编程语言,python量化投资也就是通过使用Python编写能够发出买卖指令的程序来交易。

H. 如何选取过去每个月股票的市值 python

类似,可以修改一下
股票涨跌幅数据是量化投资学习的基本数据资料之一,下面以python代码编程为工具,获得所需要的历史数据。主要步骤有:
(1) #按照市值从小到大的顺序活得N支股票的代码;
(2) #分别对这一百只股票进行100支股票操作;
(3) #获取从2016.05.01到2016.11.17的涨跌幅数据;
(4) #选取记录大于40个的数据,去除次新股;
(5) #将文件名名为“股票代码.csv”。
具体代码如下:
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 17 23:04:33 2016
获取股票的历史涨跌幅,并分别存为csv格式
@author: yehxqq151376026
"""

import numpy as np
import pandas as pd

#按照市值从小到大的顺序活得100支股票的代码
df = get_fundamentals(
query(fundamentals.eod_derivative_indicator.market_cap)
.order_by(fundamentals.eod_derivative_indicator.market_cap.asc())
.limit(100),'2016-11-17', '1y'
)

#分别对这一百只股票进行100支股票操作
#获取从2016.05.01到2016.11.17的涨跌幅数据
#选取记录大于40个的数据,去除次新股
#将文件名名为“股票代码.csv”
for stock in range(100):
priceChangeRate = get_price_change_rate(df['market_cap'].columns[stock], '20160501', '20161117')
if priceChangeRate is None:
openDays = 0
else:
openDays = len(priceChangeRate)
if openDays > 40:
tempPrice = priceChangeRate[39:(openDays - 1)]
for rate in range(len(tempPrice)):
tempPrice[rate] = "%.3f" %tempPrice[rate]
fileName = ''
fileName = fileName.join(df['market_cap'].columns[i].split('.')) + '.csv'
fileName
tempPrice.to_csv(fileName)

I. 炒期货必看那几本书

1、基础修炼:约翰默菲,《期货市场技术分析》;《日本蜡烛图》
2、进阶修炼:《以交易为主》,《股票作手回忆录》,《专业投机原理》
3、高级修炼:此阶段适合在市场已摸爬滚打一年以上者,有成功有失败。《十年一梦》,《股票作手回忆录》,注意此处再次阅读股票作手这本书,有不同的感触
4、灵魂修炼:《心经》《道德经》
说的比较抽象,可能不太适合你说的做金属的初衷,但这是一个有5年交易经历人士的忠告,感谢采纳!

J. 最好的期货书是哪本书

没有最好,只有有益与无益;

《股票大作手回忆录》(埃德温•勒菲弗)

《十年一梦》(青泽)

《期货市场基础》(期货业协会)

《期货市场技术分析》(墨菲)

《期货投资分析》(期货业协会)

这几本是个人看了五遍以上的,着重推荐,可以考虑依次阅读,其他书不一一枚举。

另外,不要看不起期货业协会出的书,个人感觉期货业协会的教材比证券业协会的教材有可看性,比如,同样是“投资分析”,《期货投资分析》就比《证券投资分析》有干货多了~

热点内容
javasocket读取 发布:2025-01-19 16:59:48 浏览:336
魅族路由器在哪里设置密码 发布:2025-01-19 16:59:45 浏览:657
经济与发展数据库 发布:2025-01-19 16:59:44 浏览:727
出国访问夺权 发布:2025-01-19 16:57:22 浏览:591
vb打开共享文件夹 发布:2025-01-19 16:57:11 浏览:484
怎么查询手机wifi密码 发布:2025-01-19 16:41:31 浏览:187
linux编辑图片 发布:2025-01-19 16:37:55 浏览:167
sql数据对比 发布:2025-01-19 16:32:09 浏览:232
magnet下载ftp 发布:2025-01-19 16:27:07 浏览:318
注册密码下划线是什么意思 发布:2025-01-19 16:23:58 浏览:806