当前位置:首页 » 编程语言 » python图片转字符画

python图片转字符画

发布时间: 2022-11-27 00:13:49

python的图片转字符

from PILimport Image

ascii_char =list("!~#$%^&**()_+`=][\{}|;':<>?/")

#字符与RGB的对应的映射关系

def get_char(r,g,b,alpha=256):

if alpha ==0 :

return ' '

    lenght =len(ascii_char)

gray =int(0.2126 * r +0.7152 * g +0.0722 * b)

unit = (256.0 +1)/lenght

return ascii_char[int(gray/unit)]

if __name__ =='__main__':

im = Image.open(r"C:\Users\鹏COMPUTER\Desktop\timg.jpg")

#这里是转换图片的大小,然后第二个参数表示图片的质量,一共有4种,低质量Image.NEARSET,双线性Image.BILINEAR,三次样条插值Image.BICUBIC,高质量Image.ANTIALIAS

    im = im.resize((60,30),Image.NEAREST)

txt =""

    for iin range(30):

for jin range(60):

#im.getpixel:根据坐标取得RGB对应的r,g,b三个值,这里的getpixel((i,j))的两个括号非常重要

            txt += get_char(*im.getpixel((j,i)))

txt +='\n'

    print(txt)

with open(r"C:\Users\鹏COMPUTER\Desktop\m.txt",'w')as f:

f.write(txt)

这是输出的字符串:

⑵ 花了2万多买的Python70个项目,现在分享给大家,练手进厂靠它了

前言:

不管学习哪门语言都希望能做出实际的东西来,这个实际的东西当然就是项目啦,不用多说大家都知道学编程语言一定要做项目才行。

这里整理了70个Python实战项目列表,都有完整且详细的教程,你可以从中选择自己想做的项目进行参考学习练手,你也可以从中寻找灵感去做自己的项目。

1、【Python 图片转字符画】

2、【200行Python代码实现2048】

3、【Python3 实现火车票查询工具】

4、【高德API+Python解决租房问题 】

5、【Python3 色情图片识别】

6、【Python 破解验证码】

7、【Python实现简单的Web服务器】

8、【pygame开发打飞机 游戏 】

9、【Django 搭建简易博客】

10、【Python基于共现提取《釜山行》人物关系】

11、【基于scrapy爬虫的天气数据采集(python)】

12、【Flask 开发轻博客】

13、【Python3 图片隐写术】

14、【Python 实现简易 Shell】

15、【使用 Python 解数学方程】

16、【PyQt 实现简易浏览器】

17、【神经网络实现手写字符识别系统 】

18、【Python 实现简单画板】

19、【Python实现3D建模工具】

20、【NBA常规赛结果预测——利用Python进行比赛数据分析】

21、【神经网络实现人脸识别任务】

22、【Python文本解析器】

23、【Python3 & OpenCV 视频转字符动画】

24、【Python3 实现淘女郎照片爬虫 】

25、【Python3实现简单的FTP认证服务器】

26、【基于 Flask 与 MySQL 实现番剧推荐系统】

27、【Python 实现端口扫描器】

28、【使用 Python 3 编写系列实用脚本

29、【Python 实现康威生命 游戏 】

30、【川普撞脸希拉里(基于 OpenCV 的面部特征交换) 】

31、【Python 3 实现 Markdown 解析器】

32、【Python 气象数据分析 -- 《Python 数据分析实战》】

33、【Python实现键值数据库

34、【k-近邻算法实现手写数字识别系统】

35、【ebay在线拍卖数据分析】

36、【Python 实现英文新闻摘要自动提取 】

37、【Python实现简易局域网视频聊天工具】

38、【基于 Flask 及爬虫实现微信 娱乐 机器人】

39、【Python实现Python解释器】

40、【Python3基于Scapy实现DDos】

41、【Python 实现密码强度检测器】

42、【使用 Python 实现深度神经网络】

43、【Python实现从excel读取数据并绘制成精美图像】

44、【人机对战初体验:Python基于Pygame实现四子棋 游戏 】

45、【Python3 实现可控制肉鸡的反向Shell】

46、【Python打造漏洞扫描器 】

47、【Python应用马尔可夫链算法实现随机文本生成】

48、【数独 游戏 的Python实现与破解】

49、【使用Python定制词云】

50、【Python开发简单计算器】

51、【Python 实现 FTP 弱口令扫描器】

52、【Python实现Huffman编码解压缩文件】

53、【Python实现Zip文件的暴力破解 】

54、【Python3 智能裁切图片】

55、【Python实现网站模拟登陆】

56、【给Python3爬虫做一个界面.妹子图网实战】

57、【Python 3 实现图片转彩色字符】

58、【自联想器的 Python 实现】

59、【Python 实现简单滤镜】

60、【Flask 实现简单聊天室】

61、【基于PyQt5 实现地图中定位相片拍摄位置】

62、【Python实现模板引擎】

63、【Python实现遗传算法求解n-queens问题】

64、【Python3 实现命令行动态进度条】

65、【Python 获取挂号信息并邮件通知】

66、【Python实现java web项目远端自动化更新部署】

67、【使用 Python3 编写 Github 自动周报生成器】

68、【使用 Python 生成分形图片】

69、【Python 实现 Redis 异步客户端】

70、【Python 实现中文错别字高亮系统】

最后:

以上项目列表希望可以给你在Python学习中带来帮助~

获取方式:转发 私信“1”

⑶ 如何利用Python实现图片转字符画详解

# -*- coding: utf-8 -*-from PIL import Image

codeLib = '''@B%8&WM#*/\|()1{}[]?-_+~<>i!lI;:,"^`'. '''#生成字符画所需的字符集count = len(codeLib)def transform1(image_file):
image_file = image_file.convert("L")#转换为黑白图片,参数"L"表示黑白模式
codePic = ''
for h in range(0,image_file.size[1]): #size属性表示图片的分辨率,'0'为横向大小,'1'为纵向
for w in range(0,image_file.size[0]):
gray = image_file.getpixel((w,h)) #返回指定位置的像素,如果所打开的图像是多层次的图片,那这个方法就返回一个元组
codePic = codePic + codeLib[int(((count-1)*gray)/256)]#建立灰度与字符集的映射
codePic = codePic+'\r\n'
return codePicdef transform2(image_file):
codePic = ''
for h in range(0,image_file.size[1]): for w in range(0,image_file.size[0]):
g,r,b = image_file.getpixel((w,h))
gray = int(r* 0.299+g* 0.587+b* 0.114)
codePic = codePic + codeLib[int(((count-1)*gray)/256)]
codePic = codePic+'\r\n'
return codePic

fp = open(u'暴走.jpg','rb')
image_file = Image.open(fp)
image_file=image_file.resize((int(image_file.size[0]*0.75), int(image_file.size[1]*0.5)))#调整图片大小print u'Info:',image_file.size[0],' ',image_file.size[1],' ',count

tmp = open('tmp.txt','w')
tmp.write(transform1(image_file))
tmp.close()

⑷ python如何把一个字符串批量切割并转化成图片

当然可以。
先根据字符的长度,将字符分成N个组,每组一个字符。
然后根据电脑显示器的大小,创建一个图片框,高度和长度分别设置为电脑显示器的25%。
再将字符显示到图片框中,保存图片框的内容为图片文件即可。

⑸ 怎么用python将图片转换为文本形式

ocr有开源的模块。也有国产的。总体来讲,国产的更准确。不过最好事先做一次图像处理。

几年前试过python调用开源模块识别。现在是什么情形不太清楚了。

⑹ 用python绘制字符画

python是数据统计分析软件,也只能用来对统计分析的结果数据进行绘图,以展示数据的某种趋势或数据项的分布(如折线图、直方图、饼图、散点图)。
你所说的字符画是一种什么样的图形?什么样的画?
你想要实现什么样的目标?

⑺ 用Python做一个网站,照片生成漫画头像,有这个网站就够了。

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理

对于动漫,大家一定都不陌生,我周围的不少单身码农都是动漫迷。我也是一个资深动漫迷,动漫里面有好多漂亮的小姐姐,比如斗破苍穹的美杜莎,云韵,萧薰儿,天行九歌里面紫女,焰灵姬。当然女孩也有自己的动漫情怀,部门里面还有小姐姐喜欢cosplay呢~~

于是乎我想既然Python无所不能,不如用Python做一个小程序帮小姐姐的头像转成漫画,以后也可以搭讪一下部门的小姐姐,吹嘘一把!哈哈,想想都幸福,于是熬了一夜,总于完成了这个小程序。

1

首先,我们来看一下,漫画和我们的照片的区别,如下图所示:

2

图片转漫画——减少色彩

图片转漫画——减少色彩
有了上述的两个细节的描述,我们接下来的程序,也将围绕着这两点进行展开。

其对应的程序入下图所示:

上述程序中,我们需要注意的一点就是对于输入的图片我们必须要调整图片尺寸为4的整数倍,因为在金字塔下采样的过程中,图片会默认降到原先尺寸的1/4大小,如果无法除尽的话,程序会自动向上取整,这样的话,我们上采样之后,模糊的图片和最初输入的图片在分辨率上会有些许的差别,这样会使后面的程序保存。

3

完成了上面几步之后,我们接着要进行增强轮廓了。我们的程序如下图所示:

上述的程序中,我们利用opencv的自适应阈值函数来分割轮廓,然后将我们的轮廓图片和模糊后的图片按照轮廓图片的数值进行与操作,最终得到我们的漫画图片。

以上便是程序的核心部分,接下来我们用Python里面的着名框架flask程序做一个简单额网站页面。

4

对于flask程序,想必大家或多或少都有一定的了解,我们所使用的flask程序非常简单,我简单的说一下思路和步骤:

⑻ 如何用python将图片转为字符画

# coding:utf-8
# 为一张图片生成对应的字符集图片
from PIL import Image
import argparse
# 命令行输入参数处理
parser = argparse.ArgumentParser()
parser.add_argument('file') # 输入文件
parser.add_argument('-o', '--output') # 输出文件
parser.add_argument('--width', type=int, default=80) # 输出字符画宽
parser.add_argument('--height', type=int, default=80) # 输出字符画高
# 获取参数
args = parser.parse_args()
IMG = args.file
WIDTH = args.width
HEIGHT = args.height
OUTPUT = args.output
ascii_char = list("$@B%8&WM#*/\|()1{}[]?-_+~<>i!lI;:,\"^`'. ")
# 将256灰度映射到70个字符上
def get_char(r, b, g, alpha=256):
if alpha == 0:
return ' '
length = len(ascii_char)
gray = int(0.2126 * r + 0.7152 * g + 0.0722 * b)
unit = (256.0 + 1)/length
return ascii_char[int(gray/unit)]
if __name__ == '__main__':
im = Image.open(IMG)
im = im.resize((WIDTH, HEIGHT), Image.NEAREST)
txt = ""
for i in range(HEIGHT):
for j in range(WIDTH):
txt += get_char(*im.getpixel((j, i)))
txt += '\n'
print txt
# 字符画输出到文件
if OUTPUT:
with open(OUTPUT,'w') as f:
f.write(txt)
else:
with open("output.txt", 'w') as f:
f.write(txt)

⑼ python处理图片数据

目录

1.机器是如何存储图像的?

2.在Python中读取图像数据

3.从图像数据中提取特征的方法#1:灰度像素值特征

4.从图像数据中提取特征的方法#2:通道的平均像素值

5.从图像数据中提取特征的方法#3:提取边缘
是一张数字8的图像,仔细观察就会发现,图像是由小方格组成的。这些小方格被称为像素。

但是要注意,人们是以视觉的形式观察图像的,可以轻松区分边缘和颜色,从而识别图片中的内容。然而机器很难做到这一点,它们以数字的形式存储图像。请看下图:

机器以数字矩阵的形式储存图像,矩阵大小取决于任意给定图像的像素数。

假设图像的尺寸为180 x 200或n x m,这些尺寸基本上是图像中的像素数(高x宽)。

这些数字或像素值表示像素的强度或亮度,较小的数字(接近0)表示黑色,较大的数字(接近255)表示白色。通过分析下面的图像,读者就会弄懂到目前为止所学到的知识。

下图的尺寸为22 x 16,读者可以通过计算像素数来验证:

图片源于机器学习应用课程

刚才讨论的例子是黑白图像,如果是生活中更为普遍的彩色呢?你是否认为彩色图像也以2D矩阵的形式存储?

彩色图像通常由多种颜色组成,几乎所有颜色都可以从三原色(红色,绿色和蓝色)生成。

因此,如果是彩色图像,则要用到三个矩阵(或通道)——红、绿、蓝。每个矩阵值介于0到255之间,表示该像素的颜色强度。观察下图来理解这个概念:

图片源于机器学习应用课程

左边有一幅彩色图像(人类可以看到),而在右边,红绿蓝三个颜色通道对应三个矩阵,叠加三个通道以形成彩色图像。

请注意,由于原始矩阵非常大且可视化难度较高,因此这些不是给定图像的原始像素值。此外,还可以用各种其他的格式来存储图像,RGB是最受欢迎的,所以笔者放到这里。读者可以在此处阅读更多关于其他流行格式的信息。

用Python读取图像数据

下面开始将理论知识付诸实践。启动Python并加载图像以观察矩阵:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)

#checking image shape
image.shape, image

(28,28)

矩阵有784个值,而且这只是整个矩阵的一小部分。用一个LIVE编码窗口,不用离开本文就可以运行上述所有代码并查看结果。

下面来深入探讨本文背后的核心思想,并探索使用像素值作为特征的各种方法。

方法#1:灰度像素值特征

从图像创建特征最简单的方法就是将原始的像素用作单独的特征。

考虑相同的示例,就是上面那张图(数字‘8’),图像尺寸为28×28。

能猜出这张图片的特征数量吗?答案是与像素数相同!也就是有784个。

那么问题来了,如何安排这784个像素作为特征呢?这样,可以简单地依次追加每个像素值从而生成特征向量。如下图所示:

下面来用Python绘制图像,并为该图像创建这些特征:

image = imread('puppy.jpeg', as_gray=True)

image.shape, imshow(image)

(650,450)

该图像尺寸为650×450,因此特征数量应为297,000。可以使用NumPy中的reshape函数生成,在其中指定图像尺寸:

#pixel features

features = np.reshape(image, (660*450))

features.shape, features

(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])

这里就得到了特征——长度为297,000的一维数组。很简单吧?在实时编码窗口中尝试使用此方法提取特征。

但结果只有一个通道或灰度图像,对于彩色图像是否也可以这样呢?来看看吧!

方法#2:通道的平均像素值

在读取上一节中的图像时,设置了参数‘as_gray = True’,因此在图像中只有一个通道,可以轻松附加像素值。下面删除参数并再次加载图像:

image = imread('puppy.jpeg')
image.shape

(660, 450, 3)

这次,图像尺寸为(660,450,3),其中3为通道数量。可以像之前一样继续创建特征,此时特征数量将是660*450*3 = 891,000。

或者,可以使用另一种方法:

生成一个新矩阵,这个矩阵具有来自三个通道的像素平均值,而不是分别使用三个通道中的像素值。

下图可以让读者更清楚地了解这一思路:

这样一来,特征数量保持不变,并且还能考虑来自图像全部三个通道的像素值。

image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape

(660, 450)

现有一个尺寸为(660×450×3)的三维矩阵,其中660为高度,450为宽度,3是通道数。为获取平均像素值,要使用for循环:

for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)

新矩阵具有相同的高度和宽度,但只有一个通道。现在,可以按照与上一节相同的步骤进行操作。依次附加像素值以获得一维数组:

features = np.reshape(feature_matrix, (660*450))
features.shape

(297000,)

方法#3:提取边缘特征

请思考,在下图中,如何识别其中存在的对象:

识别出图中的对象很容易——狗、汽车、还有猫,那么在区分的时候要考虑哪些特征呢?形状是一个重要因素,其次是颜色,或者大小。如果机器也能像这样识别形状会怎么样?

类似的想法是提取边缘作为特征并将其作为模型的输入。稍微考虑一下,要如何识别图像中的边缘呢?边缘一般都是颜色急剧变化的地方,请看下图:

笔者在这里突出了两个边缘。这两处边缘之所以可以被识别是因为在图中,可以分别看到颜色从白色变为棕色,或者由棕色变为黑色。如你所知,图像以数字的形式表示,因此就要寻找哪些像素值发生了剧烈变化。

假设图像矩阵如下:

图片源于机器学习应用课程

该像素两侧的像素值差异很大,于是可以得出结论,该像素处存在显着的转变,因此其为边缘。现在问题又来了,是否一定要手动执行此步骤?

当然不!有各种可用于突出显示图像边缘的内核,刚才讨论的方法也可以使用Prewitt内核(在x方向上)来实现。以下是Prewitt内核:

获取所选像素周围的值,并将其与所选内核(Prewitt内核)相乘,然后可以添加结果值以获得最终值。由于±1已经分别存在于两列之中,因此添加这些值就相当于获取差异。

还有其他各种内核,下面是四种最常用的内核:

图片源于机器学习应用课程

现在回到笔记本,为同一图像生成边缘特征:

#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline

#reading the image
image = imread('puppy.jpeg',as_gray=True)

#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)

imshow(edges_prewitt_vertical, cmap='gray')

⑽ 怎样安装python的图像处理库pillow

找到easy_install.exe工具。在windows下安装Python后,在其安装路径下的scripts文件中默认安装好了easy_install工具。完整路径如下例:D:\Python27\Scripts\easy_install.exe;其中为我python的安装路径,大家可以根据自己的安装路径更改。

使用easy_install.exe工具一键安装pip.打开cmd,输入安装命令。操作命令如下图所示:

pip安装成功后,在cmd下执行pip,将会有如下提示。

再通过pip进行一键安装Pillow。pip类似RedHat里面的yum,安装Python包非常方便。操作命令如下图所示:

5
到这一步就安装好了。马上用起来吧,下图是用这个库将图片转换的字符画。转换后有点大,分割成两张了。

热点内容
点歌机怎么选切换安卓系统 发布:2025-01-17 14:05:33 浏览:719
java压缩与解压缩 发布:2025-01-17 14:03:24 浏览:925
python代码保护 发布:2025-01-17 14:02:22 浏览:323
王者荣耀电脑如何改战区安卓 发布:2025-01-17 13:23:18 浏览:814
华为手机如何开启说出密码 发布:2025-01-17 13:23:12 浏览:101
服务器在美国说明什么 发布:2025-01-17 13:14:10 浏览:11
启辰t90有哪些配置 发布:2025-01-17 13:05:40 浏览:38
手机微博密码怎么改密码忘了怎么办 发布:2025-01-17 13:04:44 浏览:959
微笑云服务器 发布:2025-01-17 13:03:25 浏览:83
android顶部标题栏 发布:2025-01-17 13:02:28 浏览:692