当前位置:首页 » 编程语言 » python网页爬虫

python网页爬虫

发布时间: 2022-01-21 23:17:02

python爬虫可以爬取什么

Python爬虫可以爬取的东西有很多,Python爬虫怎么学?简单的分析下:

如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。

利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:

知乎:爬取优质答案,为你筛选出各话题下最优质的内容。

淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。

安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。

拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。

雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。

爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。

掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。

对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……

但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。

在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。

1.学习 Python 包并实现基本的爬虫过程

2.了解非结构化数据的存储

3.学习scrapy,搭建工程化爬虫

4.学习数据库知识,应对大规模数据存储与提取

5.掌握各种技巧,应对特殊网站的反爬措施

6.分布式爬虫,实现大规模并发采集,提升效率

学习 Python 包并实现基本的爬虫过程

大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事网络、腾讯新闻等基本上都可以上手了。

当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。

了解非结构化数据的存储

爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。

开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。

当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。

学习 scrapy,搭建工程化的爬虫

掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。

scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。

学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。

学习数据库基础,应对大规模数据存储

爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。

MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。

掌握各种技巧,应对特殊网站的反爬措施

当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。

遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。

往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了.

分布式爬虫,实现大规模并发采集

爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。

分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。

Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。

你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。

因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。

当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。

以上就是我的回答,希望对你有所帮助,望采纳。

Ⅱ python爬虫可以爬哪些网站

理论上可以爬任何网站。

但是爬取内容时一定要慎重,有些底线不能触碰,否则很有可能真的爬进去!

Ⅲ python 网络爬虫 网页

nbjjm,hn lllllllllllllllllllll]]]]]]]]]]]]]]]]]]]]]]]lllllllllllllllllllllllllll

Ⅳ Python编程网页爬虫工具集介绍

【导语】对于一个软件工程开发项目来说,一定是从获取数据开始的。不管文本怎么处理,机器学习和数据发掘,都需求数据,除了通过一些途径购买或许下载的专业数据外,常常需求咱们自己着手爬数据,爬虫就显得格外重要,那么Python编程网页爬虫东西集有哪些呢?下面就来给大家一一介绍一下。

1、 Beautiful Soup

客观的说,Beautifu Soup不完满是一套爬虫东西,需求协作urllib运用,而是一套HTML / XML数据分析,清洗和获取东西。

2、Scrapy

Scrapy相Scrapy, a fast high-level screen scraping and web crawling framework
for
Python.信不少同学都有耳闻,课程图谱中的许多课程都是依托Scrapy抓去的,这方面的介绍文章有许多,引荐大牛pluskid早年的一篇文章:《Scrapy
轻松定制网络爬虫》,历久弥新。

3、 Python-Goose

Goose最早是用Java写得,后来用Scala重写,是一个Scala项目。Python-Goose用Python重写,依靠了Beautiful
Soup。给定一个文章的URL, 获取文章的标题和内容很便利,用起来非常nice。

以上就是Python编程网页爬虫工具集介绍,希望对于进行Python编程的大家能有所帮助,当然Python编程学习不止需要进行工具学习,还有很多的编程知识,也需要好好学起来哦,加油!

Ⅳ python 网络爬虫

把你要爬的网站写下来,然后代码贴出来才能帮你

Ⅵ 如何用Python爬虫抓取网页内容

首先,你要安装requests和BeautifulSoup4,然后执行如下代码.

importrequests
frombs4importBeautifulSoup

iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'

res=requests.get(iurl)

res.encoding='utf-8'

#print(len(res.text))

soup=BeautifulSoup(res.text,'html.parser')

#标题
H1=soup.select('#artibodyTitle')[0].text

#来源
time_source=soup.select('.time-source')[0].text


#来源
origin=soup.select('#artibodyp')[0].text.strip()

#原标题
oriTitle=soup.select('#artibodyp')[1].text.strip()

#内容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#责任编辑
ae=soup.select('.article-editor')[0].text

这样就可以了

Ⅶ python网络爬虫

警告你没有按照他规定的格式BeautifulSoup(html, 'markup_type')
你应该是在代码中直接用BeautifulSoup(html), 没有指定用什么来解析你的html, 他就会用一种最合适的方法来解析, 一般我用lxml, 你也可以自己改成别的
所以把代码里的BeautifulSoup(html)改成BeautifulSoup(html, 'lxml')即可

Ⅷ 如何找到完善的python3网络爬虫教程

链接:

提取码:2b6c

课程简介

毕业不知如何就业?工作效率低经常挨骂?很多次想学编程都没有学会?

Python 实战:四周实现爬虫系统,无需编程基础,二十八天掌握一项谋生技能。

带你学到如何从网上批量获得几十万数据,如何处理海量大数据,数据可视化及网站制作。

课程目录

开始之前,魔力手册 for 实战学员预习

第一周:学会爬取网页信息

第二周:学会爬取大规模数据

第三周:数据统计与分析

第四周:搭建 Django 数据可视化网站

......

Ⅸ 如何用python写爬虫来获取网页中所有的文章以及关键词

所谓网页抓取,就是把URL地址中指定的网络资源从网络流中读取出来,保存到本地。
类似于使用程序模拟IE浏览器的功能,把URL作为HTTP请求的内容发送到服务器端, 然后读取服务器端的响应资源。

在Python中,我们使用urllib2这个组件来抓取网页。
urllib2是Python的一个获取URLs(Uniform Resource Locators)的组件。

它以urlopen函数的形式提供了一个非常简单的接口。

最简单的urllib2的应用代码只需要四行。

我们新建一个文件urllib2_test01.py来感受一下urllib2的作用:

import urllib2
response = urllib2.urlopen('http://www..com/')
html = response.read()
print html

按下F5可以看到运行的结果:

我们可以打开网络主页,右击,选择查看源代码(火狐OR谷歌浏览器均可),会发现也是完全一样的内容。

也就是说,上面这四行代码将我们访问网络时浏览器收到的代码们全部打印了出来。

这就是一个最简单的urllib2的例子。

除了"http:",URL同样可以使用"ftp:","file:"等等来替代。

HTTP是基于请求和应答机制的:

客户端提出请求,服务端提供应答。

urllib2用一个Request对象来映射你提出的HTTP请求。

在它最简单的使用形式中你将用你要请求的地址创建一个Request对象,

通过调用urlopen并传入Request对象,将返回一个相关请求response对象,

这个应答对象如同一个文件对象,所以你可以在Response中调用.read()。

我们新建一个文件urllib2_test02.py来感受一下:

import urllib2
req = urllib2.Request('http://www..com')
response = urllib2.urlopen(req)
the_page = response.read()
print the_page

可以看到输出的内容和test01是一样的。

urllib2使用相同的接口处理所有的URL头。例如你可以像下面那样创建一个ftp请求。

req = urllib2.Request('ftp://example.com/')

在HTTP请求时,允许你做额外的两件事。

1.发送data表单数据

这个内容相信做过Web端的都不会陌生,

有时候你希望发送一些数据到URL(通常URL与CGI[通用网关接口]脚本,或其他WEB应用程序挂接)。

在HTTP中,这个经常使用熟知的POST请求发送。

这个通常在你提交一个HTML表单时由你的浏览器来做。

并不是所有的POSTs都来源于表单,你能够使用POST提交任意的数据到你自己的程序。

一般的HTML表单,data需要编码成标准形式。然后做为data参数传到Request对象。

编码工作使用urllib的函数而非urllib2。

我们新建一个文件urllib2_test03.py来感受一下:

import urllib
import urllib2
url = 'http://www.someserver.com/register.cgi'
values = {'name' : 'WHY',
'location' : 'SDU',
'language' : 'Python' }
data = urllib.urlencode(values) # 编码工作
req = urllib2.Request(url, data) # 发送请求同时传data表单
response = urllib2.urlopen(req) #接受反馈的信息
the_page = response.read() #读取反馈的内容

如果没有传送data参数,urllib2使用GET方式的请求。

GET和POST请求的不同之处是POST请求通常有"副作用",

它们会由于某种途径改变系统状态(例如提交成堆垃圾到你的门口)。

Data同样可以通过在Get请求的URL本身上面编码来传送。

import urllib2
import urllib
data = {}
data['name'] = 'WHY'
data['location'] = 'SDU'
data['language'] = 'Python'
url_values = urllib.urlencode(data)
print url_values
name=Somebody+Here&language=Python&location=Northampton
url = 'http://www.example.com/example.cgi'
full_url = url + '?' + url_values
data = urllib2.open(full_url)

这样就实现了Data数据的Get传送。

2.设置Headers到http请求

有一些站点不喜欢被程序(非人为访问)访问,或者发送不同版本的内容到不同的浏览器。

默认的urllib2把自己作为“Python-urllib/x.y”(x和y是Python主版本和次版本号,例如Python-urllib/2.7),

这个身份可能会让站点迷惑,或者干脆不工作。

浏览器确认自己身份是通过User-Agent头,当你创建了一个请求对象,你可以给他一个包含头数据的字典。

下面的例子发送跟上面一样的内容,但把自身模拟成Internet Explorer。

(多谢大家的提醒,现在这个Demo已经不可用了,不过原理还是那样的)。

import urllib
import urllib2
url = 'http://www.someserver.com/cgi-bin/register.cgi'
user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'
values = {'name' : 'WHY',
'location' : 'SDU',
'language' : 'Python' }
headers = { 'User-Agent' : user_agent }
data = urllib.urlencode(values)
req = urllib2.Request(url, data, headers)
response = urllib2.urlopen(req)
the_page = response.read()

以上就是python利用urllib2通过指定的URL抓取网页内容的全部内容,非常简单吧,希望对大家能有所帮助。

Ⅹ Python爬虫是什么

为自动提取网页的程序,它为搜索引擎从万维网上下载网页。

网络爬虫为一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成。传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。

将根据一定的搜索策略从队列中选择下一步要抓取的网页URL,并重复上述过程,直到达到系统的某一条件时停止。另外,所有被爬虫抓取的网页将会被系统存贮,进行一定的分析、过滤,并建立索引,以便之后的查询和检索。

(10)python网页爬虫扩展阅读:

网络爬虫的相关要求规定:

1、由Python标准库提供了系统管理、网络通信、文本处理、数据库接口、图形系统、XML处理等额外的功能。

2、按照网页内容目录层次深浅来爬行页面,处于较浅目录层次的页面首先被爬行。 当同一层次中的页面爬行完毕后,爬虫再深入下一层继续爬行。

3、文本处理,包含文本格式化、正则表达式匹配、文本差异计算与合并、Unicode支持,二进制数据处理等功能。

热点内容
绑扎搭接加密 发布:2025-01-04 19:41:52 浏览:475
如何设置电脑密码时间 发布:2025-01-04 19:37:50 浏览:289
mupdf源码 发布:2025-01-04 19:36:46 浏览:677
腾讯云如何看云服务器解析 发布:2025-01-04 19:36:44 浏览:702
c语言入门详解 发布:2025-01-04 19:34:17 浏览:429
win81的临时文件夹 发布:2025-01-04 19:32:40 浏览:147
python导出数据库 发布:2025-01-04 19:15:57 浏览:754
安卓怎么安装ios模拟器 发布:2025-01-04 19:09:56 浏览:163
王者安卓转苹果区选哪个区 发布:2025-01-04 19:03:44 浏览:693
qq编程码 发布:2025-01-04 18:56:28 浏览:440