当前位置:首页 » 编程语言 » python多进程与多线程

python多进程与多线程

发布时间: 2022-11-17 08:22:57

① 为什么在python里推荐使用多进程而不是多线程

在Python多线程下,每个线程的执行方式:
1、获取GIL
2、执行代码直到sleep或者是python虚拟机将其挂起。
3、释放GIL

可见,某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。

在Python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100(ticks可以看作是Python自身的一个计数器,专门做用于GIL,每次释放后归零,这个计数可以通过
sys.setcheckinterval 来调整),进行释放。

而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,python的多线程效率并不高。

那么是不是python的多线程就完全没用了呢?
在这里我们进行分类讨论:
1、CPU密集型代码(各种循环处理、计数等等),在这种情况下,由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。

2、IO密集型代码(文件处理、网络爬虫等),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。所以python的多线程对IO密集型代码比较友好。

而在python3.x中,GIL不使用ticks计数,改为使用计时器(执行时间达到阈值后,当前线程释放GIL),这样对CPU密集型程序更加友好,但依然没有解决GIL导致的同一时间只能执行一个线程的问题,所以效率依然不尽如人意。

请注意:多核多线程比单核多线程更差,原因是单核下多线程,每次释放GIL,唤醒的那个线程都能获取到GIL锁,所以能够无缝执行,但多核下,CPU0释放GIL后,其他CPU上的线程都会进行竞争,但GIL可能会马上又被CPU0拿到,导致其他几个CPU上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸(thrashing),导致效率更低

回到最开始的问题:经常我们会听到老手说:“python下想要充分利用多核CPU,就用多进程”,原因是什么呢?

原因是:每个进程有各自独立的GIL,互不干扰,这样就可以真正意义上的并行执行,所以在python中,多进程的执行效率优于多线程(仅仅针对多核CPU而言)。

所以在这里说结论:多核下,想做并行提升效率,比较通用的方法是使用多进程,能够有效提高执行效率

② python 多进程和多线程配合

由于python的多线程中存在PIL锁,因此python的多线程不能利用多核,那么,由于现在的计算机是多核的,就不能充分利用计算机的多核资源。但是python中的多进程是可以跑在不同的cpu上的。因此,尝试了多进程+多线程的方式,来做一个任务。比如:从中科大的镜像源中下载多个rpm包。
#!/usr/bin/pythonimport reimport commandsimport timeimport multiprocessingimport threadingdef download_image(url):
print '*****the %s rpm begin to download *******' % url
commands.getoutput('wget %s' % url)def get_rpm_url_list(url):
commands.getoutput('wget %s' % url)
rpm_info_str = open('index.html').read()

regu_mate = '(?<=<a href=")(.*?)(?=">)'
rpm_list = re.findall(regu_mate, rpm_info_str)

rpm_url_list = [url + rpm_name for rpm_name in rpm_list] print 'the count of rpm list is: ', len(rpm_url_list) return rpm_url_
def multi_thread(rpm_url_list):
threads = [] # url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
# rpm_url_list = get_rpm_url_list(url)
for index in range(len(rpm_url_list)): print 'rpm_url is:', rpm_url_list[index]
one_thread = threading.Thread(target=download_image, args=(rpm_url_list[index],))
threads.append(one_thread)

thread_num = 5 # set threading pool, you have put 4 threads in it
while 1:
count = min(thread_num, len(threads)) print '**********count*********', count ###25,25,...6707%25

res = [] for index in range(count):
x = threads.pop()
res.append(x) for thread_index in res:
thread_index.start() for j in res:
j.join() if not threads:
def multi_process(rpm_url_list):
# process num at the same time is 4
process = []
rpm_url_group_0 = []
rpm_url_group_1 = []
rpm_url_group_2 = []
rpm_url_group_3 = [] for index in range(len(rpm_url_list)): if index % 4 == 0:
rpm_url_group_0.append(rpm_url_list[index]) elif index % 4 == 1:
rpm_url_group_1.append(rpm_url_list[index]) elif index % 4 == 2:
rpm_url_group_2.append(rpm_url_list[index]) elif index % 4 == 3:
rpm_url_group_3.append(rpm_url_list[index])
rpm_url_groups = [rpm_url_group_0, rpm_url_group_1, rpm_url_group_2, rpm_url_group_3] for each_rpm_group in rpm_url_groups:
each_process = multiprocessing.Process(target = multi_thread, args = (each_rpm_group,))
process.append(each_process) for one_process in process:
one_process.start() for one_process in process:
one_process.join()# for each_url in rpm_url_list:# print '*****the %s rpm begin to download *******' %each_url## commands.getoutput('wget %s' %each_url)
def main():
url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
url_paas = 'http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/'
url_paas2 ='http://mirrors.ustc.e.cn/fedora/development/26/Server/x86_64/os/Packages/u/'

start_time = time.time()
rpm_list = get_rpm_url_list(url_paas) print multi_process(rpm_list) # print multi_thread(rpm_list)
#print multi_process()
# print multi_thread(rpm_list)
# for index in range(len(rpm_list)):
# print 'rpm_url is:', rpm_list[index]
end_time = time.time() print 'the download time is:', end_time - start_timeprint main()123456789101112131415161718

代码的功能主要是这样的:
main()方法中调用get_rpm_url_list(base_url)方法,获取要下载的每个rpm包的具体的url地址。其中base_url即中科大基础的镜像源的地址,比如:http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/,这个地址下有几十个rpm包,get_rpm_url_list方法将每个rpm包的url地址拼出来并返回。
multi_process(rpm_url_list)启动多进程方法,在该方法中,会调用多线程方法。该方法启动4个多进程,将上面方法得到的rpm包的url地址进行分组,分成4组,然后每一个组中的rpm包再最后由不同的线程去执行。从而达到了多进程+多线程的配合使用。
代码还有需要改进的地方,比如多进程启动的进程个数和rpm包的url地址分组是硬编码,这个还需要改进,毕竟,不同的机器,适合同时启动的进程个数是不同的。

③ Python高阶(一) - 单线程、多线程和多进程的效率对比测试

多线程的目的 - “最大限度地利用CPU资源”。每个程序执行时都会产生一个进程,而每一个进程至少要有一个主线程。对于单CPU来说(没有开启超线程),在同一时间只能执行一个线程,所以如果想实现多任务,那么就只能每个进程或线程获得一个时间片,在某个时间片内,只能一个线程执行,然后按照某种策略换其他线程执行。由于时间片很短,这样给用户的感觉是同时有好多线程在执行。
Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多线程(Thread)的情况下,不能发挥多核的优势。而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率。

单线程、多线程和多进程的效率对比测试: github地址

资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。所以我们根据实验对比不同场景的效率

| CPU密集型操作| IO密集型操作| 网络请求密集型操作
-- | -- | --| --
线性操作| 69.73533328374 |17.76633326213 | 6.78833333651
多线程操作| 75.40299995740 |145.68366670609 | 1.93999997775
多进程操作| 13.97433336576 | 4.67833328247| 2.38333328565

仅个人观点,,欢迎留言~~~

④ python中多进程和多线程的区别

什么是线程、进程?
进程(process)与线程(thread)是操作系统的基本概念,它们比较抽象,不容易掌握。
关于这两者,最经典的一句话就是“进程是资源分配的最小单位,线程是CPU调度的最小单位”,线程是程序中一个单一的顺序控制流程,进程内一个相对独立的、可调度的执行单元,是系统独立调度和分配CPU的基本单位指运行中的程序的调度单位,在单个程序中同时运行多个线程完成不同的工作,称为多线程。
进程与线程的区别是什么?
进程是资源分配的基本单位,所有与该进程有关的资源,都被记录在进程控制块PCB中,以表示该进程拥有这些资源或正在使用它们,另外,进程也是抢占处理机的调度单位,它拥有一个完整的虚拟地址空间,当进程发生调度时,不同的进程拥有不同的虚拟地址空间,而同一进程内的不同线程共享同一地址空间。
与进程相对应的,线程与资源分配无关,它属于某一个进程,并与进程内的其他线程一起共享进程的资源,线程只由相关堆栈(系统栈或用户栈)寄存器和线程控制表TCB组成,寄存器可被用来存储线程内的局部变量,但不能存储其他线程的相关变量。
通常在一个进程中可以包含若干个线程,它们可以利用进程所拥有的资源,在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位。
由于线程比进程更小,基本上不拥有系统资源,所以对它的调度所付出的开销就会小得多,能更高效的提高系统内多个程序间并发执行的程度,从而显着提高系统资源的利用率和吞吐量。
因而近年来推出的通用操作系统都引入了线程,以便进一步提高系统的并发性,并把它视为现代操作系统的一个重要指标。

⑤ python 多线程和多进程的区别 mutiprocessing theading

GIL在Python中,由于历史原因(GIL),使得Python中多线程的效果非常不理想.GIL使得任何时刻Python只能利用一个CPU核,并且它的调度算法简单粗暴:多线程中,让每个线程运行一段时间t,然后强行挂起该线程,继而去运行其他线程,如此周而复始,直到所有线程结束.这使得无法有效利用计算机系统中的"局部性",频繁的线程切换也对缓存不是很友好,造成资源的浪费.据说Python官方曾经实现了一个去除GIL的Python解释器,但是其效果还不如有GIL的解释器,遂放弃.后来Python官方推出了"利用多进程替代多线程"的方案,在Python3中也有concurrent.futures这样的包,让我们的程序编写可以做到"简单和性能兼得".多进程/多线程+Queue一般来说,在Python中编写并发程序的经验是:计算密集型任务使用多进程,IO密集型任务使用多进程或者多线程.另外,因为涉及到资源共享,所以需要同步锁等一系列麻烦的步骤,代码编写不直观.另外一种好的思路是利用多进程/多线程+Queue的方法,可以避免加锁这样麻烦低效的方式.现在在Python2中利用Queue+多进程的方法来处理一个IO密集型任务.假设现在需要下载多个网页内容并进行解析,单进程的方式效率很低,所以使用多进程/多线程势在必行.我们可以先初始化一个tasks队列,里面将要存储的是一系列dest_url,同时开启4个进程向tasks中取任务然后执行,处理结果存储在一个results队列中,最后对results中的结果进行解析.最后关闭两个队列.下面是一些主要的逻辑代码.#-*-coding:utf-8-*-#IO密集型任务#多个进程同时下载多个网页#利用Queue+多进程#由于是IO密集型,所以同样可以利用threading模块importmultiprocessingdefmain():tasks=multiprocessing.JoinableQueue()results=multiprocessing.Queue()cpu_count=multiprocessing.cpu_count()#进程数目==CPU核数目create_process(tasks,results,cpu_count)#主进程马上创建一系列进程,但是由于阻塞队列tasks开始为空,副进程全部被阻塞add_tasks(tasks)#开始往tasks中添加任务parse(tasks,results)#最后主进程等待其他线程处理完成结果defcreate_process(tasks,results,cpu_count):for_inrange(cpu_count):p=multiprocessing.Process(target=_worker,args=(tasks,results))#根据_worker创建对应的进程p.daemon=True#让所有进程可以随主进程结束而结束p.start()#启动def_worker(tasks,results):whileTrue:#因为前面所有线程都设置了daemon=True,故不会无限循环try:task=tasks.get()#如果tasks中没有任务,则阻塞result=_download(task)results.put(result)#:tasks.task_done()defadd_tasks(tasks):forurlinget_urls():#get_urls()returnaurls_listtasks.put(url)defparse(tasks,results):try:tasks.join()exceptKeyboardInterruptaserr:print"Taskshasbeenstopped!"printerrwhilenotresults.empty():_parse(results)if__name__=='__main__':main()利用Python3中的concurrent.futures包在Python3中可以利用concurrent.futures包,编写更加简单易用的多线程/多进程代码.其使用感觉和java的concurrent框架很相似(借鉴?)比如下面的简单代码示例defhandler():futures=set()withconcurrent.futures.ProcessPoolExecutor(max_workers=cpu_count)asexecutor:fortaskinget_task(tasks):future=executor.submit(task)futures.add(future)defwait_for(futures):try:forfutureinconcurrent.futures.as_completed(futures):err=futures.exception()ifnoterr:result=future.result()else::forfutureinfutures:future.cancel()print"Taskhasbeencanceled!"printereturnresult总结要是一些大型Python项目也这般编写,那么效率也太低了.在Python中有许多已有的框架使用,使用它们起来更加高效.

⑥ Python中进程与线程的区别是什么

Num01–>线程

线程是操作系统中能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。

一个线程指的是进程中一个单一顺序的控制流。

一个进程中可以并发多条线程,每条线程并行执行不同的任务。

Num02–>进程

进程就是一个程序在一个数据集上的一次动态执行过程。

进程有以下三部分组成:

1,程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成。
2,数据集:数据集则是程序在执行过程中需要的资源,比如图片、音视频、文件等。
3,进程控制块:进程控制块是用来记录进程的外部特征,描述进程的执行变化过程,系统可以用它来控制和管理进程,它是系统感知进程存在的唯一标记。

Num03–>进程和线程的区别:

1、运行方式不同:

进程不能单独执行,它只是资源的集合。

进程要操作CPU,必须要先创建一个线程。

所有在同一个进程里的线程,是同享同一块进程所占的内存空间。

2,关系

进程中第一个线程是主线程,主线程可以创建其他线程;其他线程也可以创建线程;线程之间是平等的。

进程有父进程和子进程,独立的内存空间,唯一的标识符:pid。

3,速度

启动线程比启动进程快。

运行线程和运行进程速度上是一样的,没有可比性。

线程共享内存空间,进程的内存是独立的。

4,创建

父进程生成子进程,相当于复制一份内存空间,进程之间不能直接访问

创建新线程很简单,创建新进程需要对父进程进行一次复制。

一个线程可以控制和操作同级线程里的其他线程,但是进程只能操作子进程。

5,交互

同一个进程里的线程之间可以直接访问。

两个进程想通信必须通过一个中间代理来实现。

相关推荐:《Python视频教程》

Num04–>几个常见的概念

1,什么的并发和并行?

并发:微观上CPU轮流执行,宏观上用户看到同时执行。因为cpu切换任务非常快。

并行:是指系统真正具有同时处理多个任务(动作)的能力。

2,同步、异步和轮询的区别?

同步任务:B一直等着A,等A完成之后,B再执行任务。(打电话案例)

轮询任务:B没有一直等待A,B过一会来问一下A,过一会问下A

异步任务:B不需要一直等着A, B先做其他事情,等A完成后A通知B。(发短信案例)

Num05–>进程和线程的优缺点比较

首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。

如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。

如果用多线程实现Master-Worker,主线程就是Master,其他线程就是Worker。

多进程模式最大的优点就是稳定性高,因为一个子进程崩溃了,不会影响主进程和其他子进程。(当然主进程挂了所有进程就全挂了,但是Master进程只负责分配任务,挂掉的概率低)着名的Apache最早就是采用多进程模式。

多进程模式的缺点是创建进程的代价大,在Unix/Linux系统下,用fork调用还行,在Windows下创建进程开销巨大。另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。

多线程模式通常比多进程快一点,但是也快不到哪去,而且,多线程模式致命的缺点就是任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。在Windows上,如果一个线程执行的代码出了问题,你经常可以看到这样的提示:“该程序执行了非法操作,即将关闭”,其实往往是某个线程出了问题,但是操作系统会强制结束整个进程。

在Windows下,多线程的效率比多进程要高,所以微软的IIS服务器默认采用多线程模式。由于多线程存在稳定性的问题,IIS的稳定性就不如Apache。为了缓解这个问题,IIS和Apache现在又有多进程+多线程的混合模式,真是把问题越搞越复杂。

Num06–>计算密集型任务和IO密集型任务

是否采用多任务的第二个考虑是任务的类型。我们可以把任务分为计算密集型和IO密集型。

第一种:计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。

计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。

第二种:任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。

IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。

相关推荐:

Python中的进程是什么

⑦ 多线程 python和多进程的区别

前面的章节,我们刚刚介绍过socket和socketserver网络编程

在socketserver服务端代码中有这么一句:

server = socketserver.ThreadingTCPServer((ip,port), MyServer)

ThreadingTCPServer这个类是一个支持多线程和TCP协议的socketserver,它的继承关系是这样的:

class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass

右边的TCPServer实际上是主要的功能父类,而左边的ThreadingMixIn则是实现了多线程的类,ThreadingTCPServer自己本身则没有任何代码。

MixIn在Python的类命名中很常见,称作“混入”,戏称“乱入”,通常为了某种重要功能被子类继承。

我们看看一下ThreadingMixIn的源代码:

class ThreadingMixIn:

daemon_threads = False

def process_request_thread(self, request, client_address):
try:
self.finish_request(request, client_address)
self.shutdown_request(request)
except:
self.handle_error(request, client_address)
self.shutdown_request(request)

def process_request(self, request, client_address):

t = threading.Thread(target = self.process_request_thread,
args = (request, client_address))
t.daemon = self.daemon_threads
t.start()

在ThreadingMixIn类中,其实就定义了一个属性,两个方法。其中的process_request()方法实际调用的正是Python内置的多线程模块threading。这个模块是Python中所有多线程的基础,socketserver本质上也是利用了这个模块。

socketserver通过threading模块,实现了多线程任务处理能力,可以同时为多个客户提供服务。

那么,什么是线程,什么是进程?

进程是程序(软件,应用)的一个执行实例,每个运行中的程序,可以同时创建多个进程,但至少要有一个。每个进程都提供执行程序所需的所有资源,都有一个虚拟的地址空间、可执行的代码、操作系统的接口、安全的上下文(记录启动该进程的用户和权限等等)、唯一的进程ID、环境变量、优先级类、最小和最大的工作空间(内存空间)。进程可以包含线程,并且每个进程必须有至少一个线程。每个进程启动时都会最先产生一个线程,即主线程,然后主线程会再创建其他的子线程。

线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不独立拥有系统资源,但它可与同属一个进程的其它线程共享该进程所拥有的全部资源。每一个应用程序都至少有一个进程和一个线程。在单个程序中同时运行多个线程完成不同的被划分成一块一块的工作,称为多线程。

举个例子,某公司要生产一种产品,于是在生产基地建设了很多厂房,每个厂房内又有多条流水生产线。所有厂房配合将整个产品生产出来,单个厂房内的流水线负责生产所属厂房的产品部件,每个厂房都拥有自己的材料库,厂房内的生产线共享这些材料。公司要实现生产必须拥有至少一个厂房一条生产线。换成计算机的概念,那么这家公司就是应用程序,厂房就是应用程序的进程,生产线就是某个进程的一个线程。

线程的特点:

线程是一个execution context(执行上下文),即一个cpu执行时所需要的一串指令。假设你正在读一本书,没有读完,你想休息一下,但是你想在回来时继续先前的进度。有一个方法就是记下页数、行数与字数这三个数值,这些数值就是execution context。如果你的室友在你休息的时候,使用相同的方法读这本书。你和她只需要这三个数字记下来就可以在交替的时间共同阅读这本书了。

线程的工作方式与此类似。CPU会给你一个在同一时间能够做多个运算的幻觉,实际上它在每个运算上只花了极少的时间,本质上CPU同一时刻只能干一件事,所谓的多线程和并发处理只是假象。CPU能这样做是因为它有每个任务的execution context,就像你能够和你朋友共享同一本书一样。

进程与线程区别:

  • 同一个进程中的线程共享同一内存空间,但进程之间的内存空间是独立的。

  • 同一个进程中的所有线程的数据是共享的,但进程之间的数据是独立的。

  • 对主线程的修改可能会影响其他线程的行为,但是父进程的修改(除了删除以外)不会影响其他子进程。

  • 线程是一个上下文的执行指令,而进程则是与运算相关的一簇资源。

  • 同一个进程的线程之间可以直接通信,但是进程之间的交流需要借助中间代理来实现。

  • 创建新的线程很容易,但是创建新的进程需要对父进程做一次复制。

  • 一个线程可以操作同一进程的其他线程,但是进程只能操作其子进程。

  • 线程启动速度快,进程启动速度慢(但是两者运行速度没有可比性)。

由于现代cpu已经进入多核时代,并且主频也相对以往大幅提升,多线程和多进程编程已经成为主流。Python全面支持多线程和多进程编程,同时还支持协程。

⑧ 为什么在Python里推荐使用多进程而不是多线程

首先强调背景:

1. GIL是什么?

GIL的全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定。

2. 每个CPU在同一时间只能执行一个线程

在单核CPU下的多线程其实都只是并发,不是并行,并发和并行从宏观上来讲都是同时处理多路请求的概念。但并发和并行又有区别,并行是指两个或者多个事件在同一时刻发生;而并发是指两个或多个事件在同一时间间隔内发生。

在Python多线程下,每个线程的执行方式:

  • 获取GIL

  • 执行代码直到sleep或者是python虚拟机将其挂起。

  • 释放GIL

  • 可见,某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。

    在Python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100(ticks可以看作是Python自身的一个计数器,专门作用于GIL,每次释放后归零,这个计数可以通过 sys.setcheckinterval 来调整),进行释放。

    而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,python的多线程效率并不高。

    那么是不是python的多线程就完全没用了呢?

    在这里我们进行分类讨论:

  • CPU密集型代码(各种循环处理、计数等等),在这种情况下,由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。

  • IO密集型代码(文件处理、网络爬虫等),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。所以python的多线程对IO密集型代码比较友好。

  • 而在python3.x中,GIL不使用ticks计数,改为使用计时器(执行时间达到阈值后,当前线程释放GIL),这样对CPU密集型程序更加友好,但依然没有解决GIL导致的同一时间只能执行一个线程的问题,所以效率依然不尽如人意。

    请注意:多核多线程比单核多线程更差,原因是单核下的多线程,每次释放GIL,唤醒的那个线程都能获取到GIL锁,所以能够无缝执行,但多核下,CPU0释放GIL后,其他CPU上的线程都会进行竞争,但GIL可能会马上又被CPU0拿到,导致其他几个CPU上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸(thrashing),导致效率更低。

    回到最开始的问题:经常我们会听到老手说:“python下想要充分利用多核CPU,就用多进程”,原因是什么呢?

    原因是:每个进程有各自独立的GIL,互不干扰,这样就可以真正意义上的并行执行,所以在python中,多进程的执行效率优于多线程(仅仅针对多核CPU而言)。

    所以在这里说结论:多核下,想做并行提升效率,比较通用的方法是使用多进程,能够有效提高执行效率

⑨ python多进程,多线程分别是并行还是并发

并发和并行

你吃饭吃到一半,电话来了,你一直到吃完了以后才去接,这就说明你不支持并发也不支持并行。
你吃饭吃到一半,电话来了,你停了下来接了电话,接完后继续吃饭,这说明你支持并发。
你吃饭吃到一半,电话来了,你一边打电话一边吃饭,这说明你支持并行。
并发的关键是你有处理多个任务的能力,不一定要同时。
并行的关键是你有同时处理多个任务的能力。
所以我认为它们最关键的点就是:是否是‘同时’。
Python 中没有真正的并行,只有并发
无论你的机器有多少个CPU, 同一时间只有一个Python解析器执行。这也和大部分解释型语言一致, 都不支持并行。这应该是python设计的先天缺陷。
javascript也是相同的道理, javascript早起的版本只支持单任务,后来通过worker来支持并发。
Python中的多线程
先复习一下进程和线程的概念
所谓进程,简单的说就是一段程序的动态执行过程,是系统进行资源分配和调度的一个基本单位。一个进程中又可以包含若干个独立的执行流,我们将这些执行流称为线程,线程是CPU调度和分配的基本单位。同一个进程的线程都有自己的专有寄存器,但内存等资源是共享的。
这里有一个更加形象的解释, 出自阮一峰大神的杰作:
http://www.ruanyifeng.com/blog/2013/04/processes_and_threads.html
Python中的thread的使用
通过 thread.start_new_thread 方法
import thread
import time

# Define a function for the thread
def print_time( threadName, delay):
count = 0
while count < 5:
time.sleep(delay)
count += 1
print "%s: %s" % ( threadName, time.ctime(time.time()) )

# Create two threads as follows
try:
thread.start_new_thread( print_time, ("Thread-1", 2, ) )
thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
print "Error: unable to start thread"

while 1:
pass

通过继承thread
#!/usr/bin/python
import threading
import time
exitFlag = 0
class myThread (threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print "Starting " + self.name
print_time(self.name, self.counter, 5)
print "Exiting " + self.name

def print_time(threadName, delay, counter):
while counter:
if exitFlag:
threadName.exit()
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1

# Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# Start new Threads
thread1.start()
thread2.start()
print "Exiting Main Thread"

线程的同步
#!/usr/bin/python

import threading
import time

class myThread (threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print "Starting " + self.name
# Get lock to synchronize threads
threadLock.acquire()
print_time(self.name, self.counter, 3)
# Free lock to release next thread
threadLock.release()

def print_time(threadName, delay, counter):
while counter:
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1

threadLock = threading.Lock()
threads = []

# Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# Start new Threads
thread1.start()
thread2.start()

# Add threads to thread list
threads.append(thread1)
threads.append(thread2)

# Wait for all threads to complete
for t in threads:
t.join()
print "Exiting Main Thread"

利用multiprocessing多进程实现并行
进程的创建
Python 中有一套类似多线程API 的的类来进行多进程开发: multiprocessing
这里是一个来自官方文档的例子:
from multiprocessing import Process
def f(name):
print 'hello', name

if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
p.join()

类似与线程,一可以通过继承process类来实现:
from multiprocessing import Process
class Worker(Process):
def run(self):
print("in" + self.name)

if __name__ == '__main__':
jobs = []
for i in range(5):
p = Worker()
jobs.append(p)
p.start()
for j in jobs:
j.join()

进程的通信
Pipe()
pipe()函数返回一对由双向通信的管道连接的对象,这两个对象通过send, recv 方法实现 信息的传递
from multiprocessing import Process, Pipe

def f(conn):
conn.send([42, None, 'hello'])
conn.close()

if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(child_conn,))
p.start()
print parent_conn.recv() # prints "[42, None, 'hello']"
p.join()

Quene
from multiprocessing import Process, Queue
def f(q):
q.put([42, None, 'hello'])

if __name__ == '__main__':
q = Queue()
p = Process(target=f, args=(q,))
p.start()
print q.get() # prints "[42, None, 'hello']"
p.join()

进程间的同步
Python 中多进程中也有类似线程锁的概念,使用方式几乎一样:
from multiprocessing import Process, Lock
def f(l, i):
l.acquire()
print 'hello world', i
l.release()
if __name__ == '__main__':
lock = Lock()
for num in range(10):
Process(target=f, args=(lock, num)).start()

进程间的共享内存
每个进程都有独自的内存,是不能相互访问的, 也行 python官方觉得通过进程通信的方式过于麻烦,提出了共享内存的概念,以下是官方给出的例子:
from multiprocessing import Process, Value, Array

def f(n, a):
n.value = 3.1415927
for i in range(len(a)):
a[i] = -a[i]

if __name__ == '__main__':
num = Value('d', 0.0)
arr = Array('i', range(10))

p = Process(target=f, args=(num, arr))
p.start()
p.join()

print num.value
print arr[:]

总结
python通过多进程实现多并行,充分利用多处理器,弥补了语言层面不支持多并行的缺点。Python, Node.js等解释型语言似乎都是通过这种方式来解决同一个时间,一个解释器只能处理一段程序的问题, 十分巧妙。

⑩ python 多线程和多进程的区别 mutiprocessing theading

首先你要搞清楚进程和线程的关系:线程是最小的执行单元,而进程由至少一个线程组成。

multiprocessing模块是一个跨平台版本的多进程模块。该模块提供了process类来代表一个进程对象。

Process

构造方法__init__(self, group=None, target=None, name=None, args=(), kwargs={})

参数说明:

group:进程所属组。基本不用

target:表示调用对象或方法名称。

args:表示调用对象的位置参数元组。

name:别名

kwargs:表示调用对象的字典。

示例代码如下:

threading本身就可以创建多个线程:

hreads = []#定义一个线程池

t1 = threading.Thread(target=one,args=(,))#建立一个线程并且赋给t1,这个线程指定调用方法one,并且不带参数

threads.append(t1)#把t1线程装到threads线程池里

t2 = threading.Thread(target=two)

threads.append(t2)

t3 = threading.Thread(target=three)

threads.append(t3)

这时threads这个列表中就有三个线程装在里面了。

下面就是运行这个线程池里面的线程

for t in threads:

用一个for语句遍历threads里的线程,然后调用start()方法运行

注意t.join()必须放在for语句外面。

热点内容
安卓电脑如何连手机热点 发布:2025-01-13 19:40:52 浏览:142
pythonnumexpr 发布:2025-01-13 19:34:56 浏览:489
linuxpython版本查看 发布:2025-01-13 19:18:37 浏览:741
宝马三系的哪个配置走量 发布:2025-01-13 19:12:14 浏览:695
局域网如何访问服务器 发布:2025-01-13 18:56:24 浏览:189
javaarraylist访问 发布:2025-01-13 18:56:10 浏览:671
如何确定胶体是否配置成功 发布:2025-01-13 18:46:07 浏览:73
fgo缓存多大 发布:2025-01-13 18:42:13 浏览:972
能缓解压力的水果 发布:2025-01-13 18:15:36 浏览:391
怎么把文件压缩成文件 发布:2025-01-13 18:15:33 浏览:610