topython
Ⅰ python为什么能扩展
Python 具有高可扩展性,存在许多使用 C 语言或 Fortran 编写扩展的方法。必要时,Python 代码可以直接将这些扩展作为子例程来调用。这部分讨论用于构建扩展的一些主要编译器(绝对不是完整列表)。
相关推荐:《Python基础教程》
Cython
Cython(不同于 CPython)既是指一种语言,也是指一种编译器。Cython 语言是添加了 C 语言语法的 Python 语言的超集。Cython 可以在代码段或完整函数中显式释放 GIL。变量和类属性上的 C 类型声明以及对 C 函数的调用都使用 C 语法。其余部分代码则使用 Python 语法。通过这个混合的 Cython 代码,Cython 编译器可生成高效的 C 代码。任何定期优化的 C/C++ 编译器都可以编译此 C 代码,从而高度优化扩展的运行时代码,性能接近于原生的 C 代码性能。
Numba
Numba 是一个动态、即时 (JIT) 且可感知 NumPy 的 Python 编译器。Numba 使用 LLVM 编译器基础架构,生成优化的机器代码和从 Python 调用代码的包装器。与 Cython 不同,编码使用常规的 Python 语言。Numba 可读取来自装饰器中所嵌入注释的类型信息,并优化代码。对于使用 NumPy 数据结构的程序,比如数组以及许多数学函数,它可以实现与 C 或 Fortran 语言类似的性能。NumPy 对线性代数和矩阵函数使用硬件加速,利用 LAPACK 和 BLAS 提供额外加速,大大提升了性能,参见 IBM 博客文章C、Julia、Python、Numba 和 Cython 在 LU 因式分解方面的速度比较。
除 CPU 以外,Numba 还能够使用 GP-GPU 后端。Anaconda, Inc. 是 Python 某个主要发行版的幕后公司,该公司还开发了 Numba 和商业版的 Numba Pro。
Fortran to Python Interface Generator
Fortran to Python Interface Generator (F2Py) 起初为一个独立的程序包,现在包含在 NumPy 中。F2Py 支持 Python 调用以 Fortran 编写的数值例程,就好像它们是另一个 Python 模块一样。因为 Python 解释器无法理解 Fortran 源代码,所以 F2Py 以动态库文件格式将 Fortran 编译为本机代码,这是一种共享对象,包含具有 Python 模块接口的函数。因此,Python 可以直接将这些函数作为子例程来调用,以原生 Fortran 代码的速度和性能来执行。
Ⅱ 如何系统地自学 Python
是否非常想学好 Python,一方面被琐事纠缠,一直没能动手,另一方面,担心学习成本太高,心里默默敲着退堂鼓?
幸运的是,Python 是一门初学者友好的编程语言,想要完全掌握它,你不必花上太多的时间和精力。
Python 的设计哲学之一就是简单易学,体现在两个方面:
语法简洁明了:相对 Ruby 和 Perl,它的语法特性不多不少,大多数都很简单直接,不玩儿玄学。
切入点很多:Python 可以让你可以做很多事情,科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,总有一个是你感兴趣并且愿意投入时间的。
- 用一种方法,最好是只有一种方法来做一件事。
废话不多说,学会一门语言的捷径只有一个: Getting Started
¶ 起步阶段
任何一种编程语言都包含两个部分:硬知识和软知识,起步阶段的主要任务是掌握硬知识。
硬知识
“硬知识”指的是编程语言的语法、算法和数据结构、编程范式等,例如:变量和类型、循环语句、分支、函数、类。这部分知识也是具有普适性的,看上去是掌握了一种语法,实际是建立了一种思维。例如:让一个 Java 程序员去学习 Python,他可以很快的将 Java 中的学到的面向对象的知识 map 到 Python 中来,因此能够快速掌握 Python 中面向对象的特性。
如果你是刚开始学习编程的新手,一本可靠的语法书是非常重要的。它看上去可能非常枯燥乏味,但对于建立稳固的编程思维是必不可少。
下面列出了一些适合初学者入门的教学材料:
廖雪峰的 Python 教程 Python 中文教程的翘楚,专为刚刚步入程序世界的小白打造。
笨方法学 Python 这本书在讲解 Python 的语法成分时,还附带大量可实践的例子,非常适合快速起步。
The Hitchhiker’s Guide to Python! 这本指南着重于 Python 的最佳实践,不管你是 Python 专家还是新手,都能获得极大的帮助。
Python 的哲学:
学习也是一样,虽然推荐了多种学习资料,但实际学习的时候,最好只选择其中的一个,坚持看完。
必要的时候,可能需要阅读讲解数据结构和算法的书,这些知识对于理解和使用 Python 中的对象模型有着很大的帮助。
软知识
“软知识”则是特定语言环境下的语法技巧、类库的使用、IDE的选择等等。这一部分,即使完全不了解不会使用,也不会妨碍你去编程,只不过写出的程序,看上去显得“傻”了些。
对这些知识的学习,取决于你尝试解决的问题的领域和深度。对初学者而言,起步阶段极易走火,或者在选择 Python 版本时徘徊不决,一会儿看 2.7 一会儿又转到 3.0,或者徜徉在类库的大海中无法自拔,Scrapy,Numpy,Django 什么都要试试,或者参与编辑器圣战、大括号缩进探究、操作系统辩论赛等无意义活动,或者整天跪舔语法糖,老想着怎么一行代码把所有的事情做完,或者去构想圣洁的性能安全通用性健壮性全部满分的解决方案。
很多“大牛”都会告诫初学者,用这个用那个,少走弯路,这样反而把初学者推向了真正的弯路。
还不如告诉初学者,学习本来就是个需要你去走弯路出 Bug,只能脚踏实地,没有奇迹只有狗屎的过程。
选择一个方向先走下去,哪怕脏丑差,走不动了再看看有没有更好的解决途径。
自己走了弯路,你才知道这么做的好处,才能理解为什么人们可以手写状态机去匹配却偏要发明正则表达式,为什么面向过程可以解决却偏要面向对象,为什么我可以操纵每一根指针却偏要自动管理内存,为什么我可以嵌套回调却偏要用 Promise...
更重要的是,你会明白,高层次的解决方法都是对低层次的封装,并不是任何情况下都是最有效最合适的。
技术涌进就像波浪一样,那些陈旧的封存已久的技术,消退了迟早还会涌回的。就像现在移动端应用、手游和 HTML5 的火热,某些方面不正在重演过去 PC 的那些历史么?
因此,不要担心自己走错路误了终身,坚持并保持进步才是正道。
起步阶段的核心任务是掌握硬知识,软知识做适当了解,有了稳固的根,粗壮的枝干,才能长出浓密的叶子,结出甜美的果实。
¶ 发展阶段
完成了基础知识的学习,必定会感到一阵空虚,怀疑这些语法知识是不是真的有用。
没错,你的怀疑是非常正确的。要让 Python 发挥出它的价值,当然不能停留在语法层面。
发展阶段的核心任务,就是“跳出 Python,拥抱世界”。
在你面前会有多个分支:科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,这些都不是仅仅知道 Python 语法就能解决的问题。
拿爬虫举例,如果你对计算机网络,HTTP 协议,HTML,文本编码,JSON 一无所知,你能做好这部分的工作么?而你在起步阶段的基础知识也同样重要,如果你连循环递归怎么写都还要查文档,连 BFS 都不知道怎么实现,这就像工匠做石凳每次起锤都要思考锤子怎么使用一样,非常低效。
在这个阶段,不可避免要接触大量类库,阅读大量书籍的。
类库方面
“Awesome Python 项目”:vinta/awesome-python · GitHub
这里列出了你在尝试解决各种实际问题时,Python 社区已有的工具型类库,如下图所示:
vinta/awesome-python
你可以按照实际需求,寻找你需要的类库。
至于相关类库如何使用,必须掌握的技能便是阅读文档。由于开源社区大多数文档都是英文写成的,所以,英语不好的同学,需要恶补下。
书籍方面
这里我只列出一些我觉得比较有一些帮助的书籍,详细的请看豆瓣的书评:
科学和数据分析:
❖“集体智慧编程”:集体智慧编程 (豆瓣)
❖“数学之美”:数学之美 (豆瓣)
❖“统计学习方法”:统计学习方法 (豆瓣)
❖“Pattern Recognition And Machine Learning”:Pattern Recognition And Machine Learning (豆瓣)
❖“数据科学实战”:数据科学实战 (豆瓣)
❖“数据检索导论”:信息检索导论 (豆瓣)
爬虫:
❖“HTTP 权威指南”:HTTP权威指南 (豆瓣)
Web 网站:
❖“HTML & CSS 设计与构建网站”:HTML & CSS设计与构建网站 (豆瓣)
...
列到这里已经不需要继续了。
聪明的你一定会发现上面的大部分书籍,并不是讲 Python 的书,而更多的是专业知识。
事实上,这里所谓“跳出 Python,拥抱世界”,其实是发现 Python 和专业知识相结合,能够解决很多实际问题。这个阶段能走到什么程度,更多的取决于自己的专业知识。
¶ 深入阶段
这个阶段的你,对 Python 几乎了如指掌,那么你一定知道 Python 是用 C 语言实现的。
可是 Python 对象的“动态特征”是怎么用相对底层,连自动内存管理都没有的C语言实现的呢?这时候就不能停留在表面了,勇敢的拆开 Python 的黑盒子,深入到语言的内部,去看它的历史,读它的源码,才能真正理解它的设计思路。
这里推荐一本书:
“Python 源码剖析”:Python源码剖析 (豆瓣)
这本书把 Python 源码中最核心的部分,给出了详细的阐释,不过阅读此书需要对 C 语言内存模型和指针有着很好的理解。
另外,Python 本身是一门杂糅多种范式的动态语言,也就是说,相对于 C 的过程式、 Haskell 等的函数式、Java 基于类的面向对象而言,它都不够纯粹。换而言之,编程语言的“道学”,在 Python 中只能有限的体悟。学习某种编程范式时,从那些面向这种范式更加纯粹的语言出发,才能有更深刻的理解,也能了解到 Python 语言的根源。
这里推荐一门公开课
“编程范式”:斯坦福大学公开课:编程范式
讲师高屋建瓴,从各种编程范式的代表语言出发,给出了每种编程范式最核心的思想。
值得一提的是,这门课程对C语言有非常深入的讲解,例如C语言的范型和内存管理。这些知识,对阅读 Python 源码也有大有帮助。
Python 的许多最佳实践都隐藏在那些众所周知的框架和类库中,例如 Django、Tornado 等等。在它们的源代码中淘金,也是个不错的选择。
¶ 最后的话
每个人学编程的道路都是不一样的,其实大都殊途同归,没有迷路的人只有不能坚持的人!
希望想学 Python 想学编程的同学,不要犹豫了,看完这篇文章,
Just Getting Started !!!
Ⅲ 如何系统地自学 Python
是否非常想学好Python,一方面被琐事纠缠,一直没能动手,另一方面,担心学习成本太高,心里默默敲着退堂鼓?幸运的是,Python是一门初学者友好的编程语言,想要完全掌握它,你不必花上太多的时间和精力。Python的设计哲学之一就是简单易学,体现在两个方面:语法简洁明了:相对Ruby和Perl,它的语法特性不多不少,大多数都很简单直接,不玩儿玄学。切入点很多:Python可以让你可以做很多事情,科学计算和数据分析、爬虫、Web网站、游戏、命令行实用工具等等等等,总有一个是你感兴趣并且愿意投入时间的。废话不多说,学会一门语言的捷径只有一个:GettingStarted¶起步阶段任何一种编程语言都包含两个部分:硬知识和软知识,起步阶段的主要任务是掌握硬知识。°1硬知识“硬知识”指的是编程语言的语法、算法和数据结构、编程范式等,例如:变量和类型、循环语句、分支、函数、类。这部分知识也是具有普适性的,看上去是掌握了一种语法,实际是建立了一种思维。例如:让一个Java程序员去学习Python,他可以很快的将Java中的学到的面向对象的知识map到Python中来,因此能够快速掌握Python中面向对象的特性。如果你是刚开始学习编程的新手,一本可靠的语法书是非常重要的。它看上去可能非常枯燥乏味,但对于建立稳固的编程思维是必不可少。下面列出了一些适合初学者入门的教学材料:❖“笨方法学Python”:awesome-python·GitHub这里列出了你在尝试解决各种实际问题时,Python社区已有的工具型类库,如下图所示:你可以按照实际需求,寻找你需要的类库。至于相关类库如何使用,必须掌握的技能便是阅读文档。由于开源社区大多数文档都是英文写成的,所以,英语不好的同学,需要恶补下。°2书籍方面:这里我只列出一些我觉得比较有一些帮助的书籍,详细的请看豆瓣的书评:科学和数据分析:❖“集体智慧编程”:集体智慧编程(豆瓣)❖“数学之美”:数学之美(豆瓣)❖“统计学习方法”:统计学习方法(豆瓣)❖“”:(豆瓣)❖“数据科学实战”:数据科学实战(豆瓣)❖“数据检索导论”:信息检索导论(豆瓣)爬虫:❖“HTTP权威指南”:HTTP权威指南(豆瓣)Web网站:❖“HTML&CSS设计与构建网站”:HTML&CSS设计与构建网站(豆瓣)列到这里已经不需要继续了。聪明的你一定会发现上面的大部分书籍,并不是讲Python的书,而的是专业知识。事实上,这里所谓“跳出Python,拥抱世界”,其实是发现Python和专业知识相结合,能够解决很多实际问题。这个阶段能走到什么程度,的取决于自己的专业知识。¶深入阶段这个阶段的你,对Python几乎了如指掌,那么你一定知道Python是用C语言实现的。可是Python对象的“动态特征”是怎么用相对底层,连自动内存管理都没有的C语言实现的呢?这时候就不能停留在表面了,勇敢的拆开Python的黑盒子,深入到语言的内部,去看它的历史,读它的源码,才能真正理解它的设计思路。这里推荐一本书:“Python源码剖析”:Python源码剖析(豆瓣)这本书把Python源码中最核心的部分,给出了详细的阐释,不过阅读此书需要对C语言内存模型和指针有着很好的理解。另外,Python本身是一门杂糅多种范式的动态语言,也就是说,相对于C的过程式、Haskell等的函数式、Java基于类的面向对象而言,它都不够纯粹。换而言之,编程语言的“道学”,在Python中只能有限的体悟。学习某种编程范式时,从那些面向这种范式更加纯粹的语言出发,才能有更深刻的理解,也能了解到Python语言的根源。这里推荐一门公开课“编程范式”:斯坦福大学公开课:编程范式讲师高屋建瓴,从各种编程范式的代表语言出发,给出了每种编程范式最核心的思想。值得一提的是,这门课程对C语言有非常深入的讲解,例如C语言的范型和内存管理。这些知识,对阅读Python源码也有大有帮助。Python的许多最佳实践都隐藏在那些众所周知的框架和类库中,例如Django、Tornado等等。在它们的源代码中淘金,也是个不错的选择。¶最后的话每个人学编程的道路都是不一样的,其实大都殊途同归,没有迷路的人只有不能坚持的人。虽然听上去有点鸡汤,但是这是事实。希望想学Python想学编程的同学,不要犹豫了,看完这篇文章,Justgettingstarted~
Ⅳ 编写程序显示三条消息: "Welcome to Python","Welcome to Compu
如果是单独显示的话比较简单,但是如果是嵌入的话就不容易了。需要开一个新的进程,然后重定向其输出,再放到自己的界面里。linux下比较简单,但是win就下面完全不一样了。我记得pywin32可以做到。推荐你看一下[多进程,管道]这两个部分。
Ⅳ 有哪些值得推荐的Python学习网站
1.Python.org
Python官方网站。你可以从这里下载Python、使用、学习Python。官方文档自然是最权威的学习资料,只要你英文水平够,学习起来应该不难。
2.Python教程
Python教程以及以其为代表的一系列中文Python教程。考虑到可能部分人的英文水平会成为阅读Python官方文档的障碍,所以中文教程也是必须的。相对于官方文档,这批教程可能更加适合初学者,也比较能够建立体系。
3.Stack Overflow
英语站点,50%的程序员日常工作就是从Google复制代码,剩下的50%就是从这个网站复制了。
4.Django
以及其他常用的所有框架的文档。不同的学习方向会有不同的框架,比如tensorflow、Flask 、Tornado、Requests、Scrapy等等。
5.CSDN
以CSDN为代表的一众国内博客站,还有51CTO、开源中国、博客园等等。
Ⅵ 编写程序显示三条消息: "Welcome to Python","Welcome to Compu
print("Welcome to Python")
print("Welcome to Computer Science ")
print("Programming is fun")
Ⅶ python最佳入门教程(1): python的安装
本教程基于python3.x, 是针对初学者的一系列python入门教程,在知乎上常有人问我计算机该怎么学,如何自学编程,笔者也是通过自学编程而进入IT这一行业的,回顾入行的这几年,从音视频流媒体辗转到人工智能深度学习,机器视觉,我是下了不少苦心的,对于如何学习有自己的一套理论和实践方法,很多人自言学编程不得其门,把学不会归咎于天分,其实芸芸众生,智力无别,你现在所看到的是技术大牛们一个个超凡绝顶(然知此绝顶非彼绝顶),看不到的是曾经的他们,也在每个昼夜里用心苦学。再者学一门技术,需要勤学刻苦,是需要讲究方法和基础的,方法对了就事半功倍,所谓的天才也无不是建立在扎实的基础之上。
在windows中安装python
首先打开python官网https://www.python.org/,点击页面downloads导航按钮,下载windows最新的基于web安装的安装器,右键以管理员身份运行 安装包,会出现如下界面:
将Add Python 3.7 to PATH 进行勾选,勾选此项的目的在于将python解释器加入系统环境变量,则在后续的python开发中可直接在windows 命令行中执行python脚本。所谓的环境变量是系统运行环境的一系列参数,比如这里的系统环境变量是PATH,PATH保存了与路径相关的参数,系统在路径查找中,会对PATH保存的路径进行搜索。
点击install Now按钮执行python的安装
打开windows命令行界面(按windows键输入cmd命令),输入python -V,出现python版本的相关输出,即表示安装成功。
在Linux系统中安装python
笔者的系统是CentOS, Linux系统默认有安装python,但是其版本是2.x,在这里笔者以源码安装的形式来安装python 3.X。首先进入python源码包页面 点击下载最新的gzip格式的python源码包,上传到服务器然后进行解压,解压后的目录结构如下图所示:
Linux中的configure与make
configure是Linux中的脚本配置工具,用来对源码的当前安装环境进行检测,若检测无误,会在当前目录生成一个供源码编译的Makefile脚本文件。
make是Linux系统下的编译安装工具,用来解释执行makefile文件中的脚本命令,编译命令。
现在我们开始编译安装python
(1) 在当前目录执行./configure(2) 输入 make && sudo make install
若无指定安装目录,python会被默认安装在/usr/local目录中, 读者可以执行./configure --prefix=“你自定义的安装目录”来配置安装路径。安装完毕以后进入/usr/local/bin目录,输入 “python3.x -V” (这里的python3.x为你所安装的python版本),若出现与python版本的相关输出,即表示安装成功。
为安装的python设置软链接
安装的python可以以绝对路径的方式来执行,每次敲一大段路径来执行python未免麻烦,通常我们会给安装的python设置软链接,这里的软链接类似于windows的快捷方式。
输入以下命令来给python设置软链接,笔者安装的版本是python3.7, pip是python的包管理工具,会在教程的后续章节中进行详细讲解。
ln -s /usr/bin/python3 /usr/local/bin/python3.7 # 表示设置python3 为 /usr/local/bin/python3.7的快捷方式ln -s /usr/bin/pip3 /usr/local/bin/pip3.7 # 表示设置pip3 为 /usr/local/bin/pip3.7的快捷方式
Ⅷ 初学者怎么学习Python
初学者、零基础学Python的话,建议参加培训班,入门快、效率高、周期短、实战项目丰富,还可以提升就业竞争力。
以下是老男孩教育Python全栈课程内容:阶段一:Python开发基础
Python开发基础课程内容包括:计算机硬件、操作系统原理、安装linux操作系统、linux操作系统维护常用命令、Python语言介绍、环境安装、基本语法、基本数据类型、二进制运算、流程控制、字符编码、文件处理、数据类型、用户认证、三级菜单程序、购物车程序开发、函数、内置方法、递归、迭代器、装饰器、内置方法、员工信息表开发、模块的跨目录导入、常用标准库学习,b加密\re正则\logging日志模块等,软件开发规范学习,计算器程序、ATM程序开发等。
阶段二:Python高级级编编程&数据库开发
Python高级级编编程&数据库开发课程内容包括:面向对象介绍、特性、成员变量、方法、封装、继承、多态、类的生成原理、MetaClass、__new__的作用、抽象类、静态方法、类方法、属性方法、如何在程序中使用面向对象思想写程序、选课程序开发、TCP/IP协议介绍、Socket网络套接字模块学习、简单远程命令执行客户端开发、C\S架构FTP服务器开发、线程、进程、队列、IO多路模型、数据库类型、特性介绍,表字段类型、表结构构建语句、常用增删改查语句、索引、存储过程、视图、触发器、事务、分组、聚合、分页、连接池、基于数据库的学员管理系统开发等。
阶段三:前端开发
前端开发课程内容包括:HTML\CSS\JS学习、DOM操作、JSONP、原生Ajax异步加载、购物商城开发、Jquery、动画效果、事件、定时期、轮播图、跑马灯、HTML5\CSS3语法学习、bootstrap、抽屉新热榜开发、流行前端框架介绍、Vue架构剖析、mvvm开发思想、Vue数据绑定与计算属性、条件渲染类与样式绑定、表单控件绑定、事件绑定webpack使用、vue-router使用、vuex单向数据流与应用结构、vuex actions与mutations热重载、vue单页面项目实战开发等。
阶段四:WEB框架开发
WEB框架开发课程内容包括:Web框架原理剖析、Web请求生命周期、自行开发简单的Web框架、MTV\MVC框架介绍、Django框架使用、路由系统、模板引擎、FBV\CBV视图、Models ORM、FORM、表单验证、Django session & cookie、CSRF验证、XSS、中间件、分页、自定义tags、Django Admin、cache系统、信号、message、自定义用户认证、Memcached、redis缓存学习、RabbitMQ队列学习、Celery分布式任务队列学习、Flask框架、Tornado框架、Restful API、BBS+Blog实战项目开发等。
阶段五:爬虫开发
爬虫开发课程内容包括:Requests模块、BeautifulSoup,Selenium模块、PhantomJS模块学习、基于requests实现登陆:抽屉、github、知乎、博客园、爬取拉钩职位信息、开发Web版微信、高性能IO性能相关模块:asyncio、aiohttp、grequests、Twisted、自定义开发一个异步非阻塞模块、验证码图像识别、Scrapy框架以及源码剖析、框架组件介绍(engine、spider、downloader、scheler、pipeline)、分布式爬虫实战等。
阶段六:全栈项目实战
全栈项目实战课程内容包括:互联网企业专业开发流程讲解、git、github协作开发工具讲解、任务管理系统讲解、接口单元测试、敏捷开发与持续集成介绍、django + uwsgi + nginx生产环境部署学习、接口文档编写示例、互联网企业大型项目架构图深度讲解、CRM客户关系管理系统开发等。
阶段七:数据分析
数据分析课程内容包括:金融、股票知识入门股票基本概念、常见投资工具介绍、市基本交易规则、A股构成等,K线、平均线、KDJ、MACD等各项技术指标分析,股市操作模拟盘演示量化策略的开发流程,金融量化与Python,numpy、pandas、matplotlib模块常用功能学习在线量化投资平台:优矿、聚宽、米筐等介绍和使用、常见量化策略学习,如双均线策略、因子选股策略、因子选股策略、小市值策略、海龟交易法则、均值回归、策略、动量策略、反转策略、羊驼交易法则、PEG策略等、开发一个简单的量化策略平台,实现选股、择时、仓位管理、止盈止损、回测结果展示等功能。
阶段八:人工智能
人工智能课程内容包括:机器学习要素、常见流派、自然语言识别、分析原理词向量模型word2vec、剖析分类、聚类、决策树、随机森林、回归以及神经网络、测试集以及评价标准Python机器学习常用库scikit-learn、数据预处理、Tensorflow学习、基于Tensorflow的CNN与RNN模型、Caffe两种常用数据源制作、OpenCV库详解、人脸识别技术、车牌自动提取和遮蔽、无人机开发、Keras深度学习、贝叶斯模型、无人驾驶模拟器使用和开发、特斯拉远程控制API和自动化驾驶开发等。
阶段九:自动化运维&开发
自动化运维&开发课程内容包括:设计符合企业实际需求的CMDB资产管理系统,如安全API接口开发与使用,开发支持windows和linux平台的客户端,对其它系统开放灵活的api设计与开发IT资产的上线、下线、变更流程等业务流程。IT审计+主机管理系统开发,真实企业系统的用户行为、管理权限、批量文件操作、用户登录报表等。分布式主机监控系统开发,监控多个服务,多种设备,报警机制,基于http+restful架构开发,实现水平扩展,可轻松实现分布式监控等功能。
阶段十:高并发语言GO开发高并发语言GO开发课程内容包括:Golang的发展介绍、开发环境搭建、golang和其他语言对比、字符串详解、条件判断、循环、使用数组和map数据类型、go程序编译和Makefile、gofmt工具、godoc文档生成工具详解、斐波那契数列、数据和切片、make&new、字符串、go程序调试、slice&map、map排序、常用标准库使用、文件增删改查操作、函数和面向对象详解、并发、并行与goroute、channel详解goroute同步、channel、超时与定时器reover捕获异常、Go高并发模型、Lazy生成器、并发数控制、高并发web服务器的开发等。
Ⅸ Python中定义:具有相同内容的字符串是同一个对象 s1 = "Welcome to Python" s2 = "Welcome to Python"
首先查阅资料推测了一下id()函数的原理,这里顺便引入一个is的概念来方便你理解,看下面这个表达式来说明以下三者之间的关系:
(ob1 is ob2) 等价于 (id(ob1) == id(ob2))
1. id():获取的是对象在内存中的地址
2. is :比对2个变量的对象引用(对象在内存中的地址,即id() 获得的值)是否相同。如果相同则返回True,否则返回False。换句话说,就是比对2个变量的对象引用是否指向同一个对象。
3. ==:比对2个变量指向的对象的内容是否相同。
ob1 == ob2 不代表一定会 id(ob1) == id(ob2),因为id()函数不仅要求内容相同,而且要求指向同一个对象。
就是说你问的问题其实是有问题的。。
或者说你的问法:“既然是同一个对象,那为什么id会不同?”有问题,因为“他们不是同一个对象”
但这不代表你的问题因为问法不太准确就没有讨论的价值了,他的价值在于:“为什么s1与s2不是同一个对象?”
这里做另一个小测试方便理解:
>>>a=2.5
>>>b=2.5
>>>c=b
>>>aisc
False
>>>a=2
>>>b=2
>>>c=b
>>>aisc
True
发现问题没?其实这是在python中的一个优化:即当很短的a,b赋值很短的字符串的时候,它们的id值相同,而很长的则不会。这说明本来字符串用这种赋值方式是应该分配不同的地址的,只不过python解释器在对值很小的int和很短的字符串的时候做了一点小优化,只分配了一个对象,让它们id一样了。这才是问题关键所在。
接着读资料顺便发现了一个a is b 但是 id(a) !=id(b) 的例子,当然看完后发现和这个问题没关系这里不限细说明。。
希望我的回答可以帮到你:-)
Ⅹ 想学python去哪里比较好
既然做好学习Python的准备,那么我们就要知己知彼!作为一门入门语言进行学习,Python还是比较合适的!与其他语言想比,Python的学习甚至说安装包就可以开始你的征程!当然,这里还是要说,一个程序员的修养绝对不能止于一门,两门的编程语言,哪怕是出于就业的目的,我们都要多多了解相关的技术知识。
如今,Python 已经成为一种再主流不过的编程语言了。它天生丽质,易于读写,非常实用,从而赢得了广泛的群众基础,被誉为“宇宙最好的编程语言”,被无数程序员热烈追捧。
推荐一下免费学习的网站给你
1.Python Code Examples:
https://www.programcreek.com/python/
在这里你可以搜索到你想要学习的代码示例,通过例子来进行模仿学习。
2.python中文学习大本营:
http://www.pythondoc.com/
这里有Flask资料大全,如果你需要,在这里可以找到你想要的几乎所有的教程。
3.1Python 3 Mole of the Week :
https://pymotw.com/3/
3.2Python Mole of the Week:
https://pymotw.com/2/
Python 3 Mole of the Week系列文章,每篇介绍一个 Python 标准库的使用.
4. Welcome to Python for you and me:
http://pymbook.readthedocs.io/en/latest/
主要是面对初学者的一个网站,介绍 Python的语法,项目经验等。
5. CheckiO is a code game coders:
https://py.checkio.org/
看上去就很像一个游戏界面,事实上,当你使用的时候会发现:这就是一个游戏吧!相当于你学会编程之后用它做一个闯关游戏,通过补充代码实现对应游戏要求,是很有趣的一个网站。
6.Reddit:
https://www.reddit.com/r/Python/
Reddit上有大量关于 Python 的链接,也会有不少程序员在这里进行交流,如果你有问题的话,可以在上面进行提问,或许能得到不错的答复。
7.W3Cschool Python 微课: