矩阵python
❶ python怎么表示矩阵
矩阵就是一个元素是列表的列表。按照求数据中的最孝最大、平均值,只要连接每个子列表,组成一个单列表就可以做到。
❷ python的矩阵可以做什么
python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。
计算矩阵对应行列的最大、最小值、和。
3>>>a1=mat([[1,1],[2,3],[4,2]])
>>> a1
matrix([[1, 1],
[2, 3],
[4, 2]])
计算每一列、行的和
>>>a2=a1.sum(axis=0) #列和,这里得到的是1*2的矩阵
>>> a2
matrix([[7, 6]])
>>>a3=a1.sum(axis=1) #行和,这里得到的是3*1的矩阵
>>> a3
matrix([[2],
[5],
[6]])
>>>a4=sum(a1[1,:]) #计算第一行所有列的和,这里得到的是一个数值
>>> a4
5 #第0行:1+1;第2行:2+3;第3行:4+2
计算最大、最小值和索引
>>>a1.max() #计算a1矩阵中所有元素的最大值,这里得到的结果是一个数值
4
>>>a2=max(a1[:,1]) #计算第二列的最大值,这里得到的是一个1*1的矩阵
>>> a2
matrix([[3]])
>>>a1[1,:].max() #计算第二行的最大值,这里得到的是一个一个数值
3
>>>np.max(a1,0) #计算所有列的最大值,这里使用的是numpy中的max函数
matrix([[4, 3]])
>>>np.max(a1,1) #计算所有行的最大值,这里得到是一个矩阵
matrix([[1],
[3],
[4]])
>>>np.argmax(a1,0) #计算所有列的最大值对应在该列中的索引
matrix([[2, 1]])
>>>np.argmax(a1[1,:]) #计算第二行中最大值对应在该行的索引
1
❸ python 怎么实现矩阵运算
1.numpy的导入和使用
data1=mat(zeros((
)))
#创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3)
data2=mat(ones((
)))
#创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int
data3=mat(random.rand(
))
#这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix
data4=mat(random.randint(
10
,size=(
)))
#生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数
data5=mat(random.randint(
,size=(
))
#产生一个2-8之间的随机整数矩阵
data6=mat(eye(
,dtype=
int
))
#产生一个2*2的对角矩阵
a1=[
]; a2=mat(diag(a1))
#生成一个对角线为1、2、3的对角矩阵
❹ python怎么实现矩阵的除法
1、首先打开pycharm软件,新建一个python文件并导入numpy库。
❺ python怎么输入一个数组矩阵
下面是基于python3.4的数组矩阵输入方法:
1.import numpy as np
2.arr = [1,2,3,4,5,6,7,8,9]
3.matrix_a = np.array(arr)2.
4.手动定义一个空数组:arr =[],链表数组:a = [1,2,[1,2,3]]。
❻ python矩阵乘法是什么
python实现矩阵乘法的方法
def matrixMul(A, B):
res = [[0] * len(B[0]) for i in range(len(A))]
for i in range(len(A)):
for j in range(len(B[0])):
for k in range(len(B)):
res[i][j] += A[i][k] * B[k][j]
return res
def matrixMul2(A, B):
return [[sum(a * b for a, b in zip(a, b)) for b in zip(*B)] for a in A]
a = [[1,2], [3,4], [5,6], [7,8]]
b = [[1,2,3,4], [5,6,7,8]]
print matrixMul(a,b)
print matrixMul(b,a)
乘积形式
除了上述的矩阵乘法以外,还有其他一些特殊的“乘积”形式被定义在矩阵上,值得注意的是,当提及“矩阵相乘”或者“矩阵乘法”的时候,并不是指代这些特殊的乘积形式,而是定义中所描述的矩阵乘法。在描述这些特殊乘积时,使用这些运算的专用名称和符号来避免表述歧义。
❼ 用python的numpy创建一个矩阵
使用numpy创建矩阵有2种方法,一种是使用numpy库的matrix直接创建,另一种则是使用array来创建。首先加载numpy库,然后分别用上面说的2种方法来分别构建一个4×3的矩阵,如图
[1]在高等数学或者线性代数等已经学过了当后面的矩阵的行数等于前面矩阵的列数时,2个矩阵才可以相乘
[2]Hadamard指的是2个m×n的矩阵相乘,结果仍然是m×n的矩阵,结果为对应元素的乘积
[3]单位矩阵是特殊的对角矩阵,零(1)矩阵是指元素全部是0(1)的矩阵
[4]矩阵的第一行是从0开始编号的,python中的各种编号基本上都是从0开始的
注意事项
❽ python如何申请超大二维矩阵
我试着跑了一下,也是报内存错误,原因就是内存不够,你可以试试使用numpy模块看看,然后运行numpy.zeros((43373 x 43373)),查看是否会报错array is too big,如果是这样说明你内存不够
❾ 如何使用python表示矩阵
使用python表示矩阵的方法:
使用“import numpy”语句导入numpy包。用numpy包的array函数创建一个二维数组,这个二维数组就表示矩阵
示例代码如下:
执行结果如下:
❿ python矩阵
这有函数。你可以调用。