python对象序列化
‘壹’ python如何把一个序列化的自定义类对象存到文件
Python有专门的序列化模块pickle用来序列化/反序列化对象,可以查一下它的使用。
pickle是纯Python写的,它还有个替代模块cPickle,是C语言写的,速度快很多。
‘贰’ python 哪些类型不能被序列化
下面是可以被序列化的,反之则是不可序列化的
可以被序列化的类型有:
* None,True 和 False;
* 整数,浮点数,复数;
* 字符串,字节流,字节数组;
* 包含可pickle对象的tuples,lists,sets和dictionaries;
* 定义在mole顶层的函数:
* 定义在mole顶层的内置函数;
* 定义在mole顶层的类;
* 拥有__dict__()或__setstate__()的自定义类型;
高端Python自动化测试开发系列直播课
‘叁’ 风变编程的Python课程学完效果如何
一、Python简介
Python是一种用来编写应用程序的高级程序设计语言,TIOBE程序语言排行榜2015年12月的排名如下:
Python实现强势逆袭,而且我相信,随着时间的推移,国内Python语言未来前景也是一片向好。
Python的特点是优雅简单,易学易用(虽然我感觉还是有一些概念不容易理解),Python的哲学是尽量用最少的,最简单易懂的代码实现需要的功能。Python适宜于开发网络应用,脚本写作,日常简单小工具等等。Python的缺点是效率较低,但是在大量的场合效率却不是那么重要或者说Python不是其性能瓶颈,所以不要太在意。其次是2.x-3.x的过渡使得许多3.x还缺少很多2.x下的模块,不过也在完善中。其次就是源代码无法加密,发布Python程序其实就是发布源代码。
二、基础语法要点
1.如果一个字符串中有许多需要转义的字符,而又不想写那么多'',那么可以用 r'...' 表示 '...'内的内容不转义。
2.Python可用'''...'''来表示多行内容,如:
123456>>>print('''line1line2line3''')line1line2line3
3.Python的逻辑运算and, or, not 分别对应C语言中的&&, ||, !.
4.Python的整数与浮点数大小都没有范围。
5.Python中除法有两种: '/'除出来必是浮点数, '//'除出来是整数,即地板除。
6.Python中一切皆引用。每个对象都有一个引用计数器(内部跟踪变量)进行跟踪,引用计数值表示该对象有多少个引用,当初次产生赋给变量时,引用计数为1,其后没进行下列行为中的任意一种都会增加引用计数:
123赋值: a=b用作函数参数传递: func(a)成为容器对象的一个元素: lis=[1,2,a]
以下任意一种行为都会减少引用计数:
1234del销毁:dela变量另赋给其他对象:a=False对象从容器中删除: lis.remove(a)身在的容器被销毁:dellis
7.深拷贝与浅拷贝的概念与对比,有点复杂,看这篇文章
8.list,tuple和dict,set
list:为列表,是一个有序集合,类似于数组但又比数组功能强大,可以随时append,pop元素,下标从0开始,且下标为加n模n制,即lis[-1] = lis[len-1],下标范围[-len,len-1].
tuple:为元组,类似于list,但list为可变类型,而tuple不可变,即没有append,pop等函数。一个建议是为了安全起见,能用tuple代替list尽量用tuple。如果tuple只有一个元素,要写成如(1,)以避免歧义。
dict:字典类型,存放key-value键值对,可以根据key迅速地找出value,当然,key必须是不可变类型,如下是错误的:
12345>>> dic={[1,2]:'value'}Traceback (most recent call last):File"<pyshell#10>", line1,in<mole>dic={[1,2]:'value'}TypeError: unhashabletype:'list'
list与dict的优劣对比:
1234567dict:1.插入,查找速度快,跟key的数目无关2.需占用大量内存,内存浪费严重list:1.插入,查找速度慢,O(n)的复杂度,随元素个数增加而增加2.占用内存小
dict内部存放的顺序和key放入的顺序是没有关系的
set:set与dict类似,相当于只有key没有value的dict,每个key不同,set间有 &, | 等操作对应集合的交,并操作。
三、函数
1.函数是对象,函数名即是指向对应函数对象的引用,所以可以将函数名赋给一个变量,相当于给函数起一个‘别名’。
123>>> mmm=max>>> mmm(1,2,3)3
2.Python函数可以返回”多个值“,之所以打引号,是因为实际上返回的多个值拼成了一个元组,返回这个元组。
3.定义默认参数需要牢记:默认参数必须指向不变对象。否则第一次调用和第二次调用结果会不一样,因为可变的默认参数调用后改变了。
4.可变参数:传入的参数个数是可变的,可以是0个或多个。可变参数会将你传入的参数自动组装为一个tuple。在你传入的list或tuple名字前加一个 * 即说明传入的是可变参数。习惯写法为*args。
5.关键字参数:传入0个或多个含参数名的参数,这些参数被自动组装成一个dict。习惯写法**kw,如**a表示把a中所有的键值对以关键字参数的形式传入kw,获得一个dict,这个dict是a的一份拷贝,对kw改动不会传递到a
6.命名关键字在函数定义中跟在一个*分割符后,如
12deffunc(a,b,*,c,d):pass
c,d为命名关键字参数,可以限制调用者可以传入的参数名,同时可以提供默认值。
7.参数定义顺序:必选参数,默认参数,可变参数/命名关键字参数,关键字参数。
8.切片操作格式为lis[首下标:尾下标:间隔],如果都不填,即lis[::]则代表整个容器lis
9.用圆括号()括起来一个列表生成式创建一个生成器generator,generator保存生成算法,我们可以用next(g)取得生成器g的下一个返回值。生成器的好处就是我们不需要提前生成所有列表元素,而是需要时再生成,这在某些情况下可以节省许多内存。算法也可以不是列表生成式而是自定义函数,只需在函数定义中包含yield关键字。
10.map()和rece(): 二者都是高阶函数。map()接收两个参数,一个是函数,一个是Iterable序列,map将传入的函数依次作用在序列每一个元素上,并把结果作为新的Iterator返回。rece()类似累积计算版的map(),把一个函数作用在一个序列上,每次接收两个参数,将结果继续与序列的下一个元素做累积计算。
利用map和rece编写一个str2float函数,如把字符串'123.456'转换成浮点数123.456:
123456789101112131415(s):deff1(x,y):returnx*10+ydefchar2num(s):return{'0':0,'1':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9}[s]deff2(x,y):returnx*0.1+ya,b=s.split('.')print('a=',a)print('b=',b)returnrece(f1,map(char2num,a))+0.1*rece(f2,map(char2num,b[::-1]))print('str2float('123.456') =', str2float('123.456'))
11.fliter()函数过滤序列,类似于map()作用于每一元素,根据返回值是True或者False决定舍弃还是保留该元素。函数返回一个Iterator。
12.sorted()函数可实现排序,类似于C++库中的sort()函数,但是比其更加简洁,语法为sorted(lis,key=func,reverse=T/F)
key函数可实现自定义的排序规则,reverse表示升序还是降序。
13.一个函数可以返回一个函数,但是返回时该函数并未执行,所以返回函数中不要引用任何可能发生变化的变量,否则会出现逻辑错误。
14.装饰器(decorator): 当需要增强函数的功能却不希望修改函数本身,那么可以采用装饰器这种运行时动态增加功能的方式,增加的功能卸载装饰器函数中。如在执行前后打印'begin call'和'end call',可以这样做:
12345678910111213141516importfunctoolsdeflog(func):@functools.wraps(func)#为了校正函数签名,最好写上defwrapper(*args,**kw):print('begin call')f=func(*args,**kw)print('end call')returnfreturnwrapper@logdefhah():print('hahahaha')hah()
123
begin callhahahahaend call
15.偏函数: functools.partial(),作用是将一个函数的某些参数固定住,作为新函数的参数,即固定住该参数,返回一个新函数,使调用更简单。
四、面向对象编程
1.Python实例变量可以自由地绑定任何属性
2.为了不让内部属性不被外部访问,在属性的名称前加上两个下划线__,这样就变成了一个私有变量(private),注意,不能直接访问不代表一定不能访问,事实上,加双下划线后Python就会将其改名为‘_class名__name’,所以还是可以这样来访问这个‘私有’变量。
3.对于静态语言,如果要求传入一个class类型的对象,那么传入的对象必须是class类型或者其子类,否则将无法调用class中的方法,而Python这样的动态语言有‘鸭子类型’一说,即不一定要传入class类型或其子类,而只要保证传入的对象中有要使用的方法即可。
4.如果想要限制实例可以绑定的属性,那么在定义class时定义一个__slots__变量即可,例如:
12classStudent(object):__slots__=(‘name’,’age’)
注意,__slots__限制的属性对当前类实例起完全限制作用,且与子类共同定义其__slots__,也就是说子类可以定义自己的__slots__,子类实例允许定义的属性就是自身的__slots__加上父类的__slots__,即并集。
5.@ property装饰器可以使一个getter方法变成属性,如果方法名为me,那么@me.setter装饰器则可使一个setter方法变成属性。这样可以使代码更简短,同时可对参数进行必要的检查。
6.通过多重继承,可使子类拥有多个父类的所有功能。
7.在类中__call__方法可使实例对象像函数那样直接调用,作用即是该方法定义的过程。
8.ORM(Object Relational Mapping 对象关系映射),就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表。ORM的实现需要通过metaclass元类修改类的定义。元类可以改变类创建时的行为。
五、调试
1.Python调试方法:
(1)直接打印
(2)断言
(3)pdb
(4)IDE
六、IO编程
1.序列化: 把变量从内存中变成可存储或传输的过程称之为序列化。Python用pickle模块实现序列化。序列化之后,就可以把序列化后的内容存储到磁盘上或者通过网络进行传输。pickle.mps()将对象序列化成一个bytes,而pickle.loads()可以根据bytes反序列化出对象。
2.pickle虽好,但是它专为Python而生,所以要在不同语言间传递对象,最好还是xml或者json,而json表示格式是一个字符串,更易读取,且比xml快,所以更加适宜于对象序列化。Python内置了json模块,相应方法仍然是mps()和loads()。
3.但是在默认情况下,有些对象是无法序列化的,所以我们有时还需要定制转换方法,告诉json该如何将某类对象转换成可序列为json格式的{}对象。如下即是一个转换方法:
123456defmantodict(std):return{'name': std.name,'age': std.age,'id': std.id}
七、进程与线程
1.Python用mutiprocessing模块来实现多进程。
2.如果要大量创建子进程,可以使用进程池:
1frommultiprocessingimportPool
示例如下:
12345678....p=Pool(4)foriinrange(5):p.apply_async(long_time_task, args=(i,))print('Waiting for all subprocesses done...')p.close()p.join()print('All subprocesses done.')
要使用进程池需新建Pool对象,对Pool对象调用join()使等待池中所有子进程运行完毕,调用join()方法之前必须调用close(),且此后无法再新加子进程。
3.使用subprocess模块可以方便的启动并管理一个子进程,控制其输入输出。
4.进程间通信使用Queue,Pipes实现。
5.threading模块管理线程。threading.lock()创建线程锁,防止同时访问互斥资源造成的错误,示例如下:
1234567lock=threading.Lock()...lock.acquire()...change(mutex)...lock.release()
6.ThreadLocal可以解决参数在一个线程中各个函数之间互相传递的问题。
7.managers模块实现分布式进程。
八、正则表达式与常用内建模块
1.re模块进行正则表达式编译和匹配,如果该表达式需要匹配很多次,那么最好进行编译从而大大节省时间。
正则表达式匹配邮箱例子:
12345678910importrehah=re.compile('[0-9a-zA-Z]+[.[0-9a-zA-Z]+]*@[0-9a-zA-Z]+.[a-z]{2,3}')print(hah.match('[email protected]').group())print(hah.match('[email protected]').group())i=1whilei <10:r=input('请输入邮箱:')print(hah.match(r).group())i=i+1
2.datetime模块进行日期和时间的处理,每一个时间对应一个timestamp,我们把1970年1月1日 00:00:00 UTC+00:00时区的时刻称为epoch time,记为0(1970年以前的时间timestamp为负数),当前时间就是相对于epoch time的秒数,称为timestamp。字符串和datetime也可以相互转换,采用strptime()方法,字符串转换为datetime时需要设定一个识别格式,其中
1%Y-%m-%d%H:%M:%S
分别表示年-月-日 时-分-秒。
从datetime得出月份,星期等字符串用strftime()方法,其中:
1%a,%b%d%H:%M
分别表示星期, 月份 日期 时:分。
示例:
12345678910fromdatetimeimportdatetimer='2015-11-23 12:01'dt=datetime.strptime(r,'%Y-%m-%d %H:%M')print(dt)week=dt.strftime('%a %b %d, %H:%M')print(week)2015-11-2312:01:00Mon Nov23,12:01
3.collections是Python内建的一个集合模块,提供了许多有用的集合类。
4.Base64是一种任意二进制到文本字符串的编码方法,常用于在URL、Cookie、网页中传输少量二进制数据。
5.struct模块用来解决bytes和其他二进制数据类型的转换。
6.Python的hashlib提供了常见的哈希算法,如MD5,SHA1等等。hashlib实现简单登录:
importhashlibdb={'michael':'','bob':'','alice':''}defget_md5(ostr):md5=hashlib.md5()md5.update(ostr.encode())returnmd5.hexdigest()deflogin(user, password):r=get_md5(password)fornameindb:ifdb[name]==r:returnTruereturnFalseprint(login('bob','abc999'))True
7.Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数。
8.urllib提供了一系列用于操作URL的功能。如GET,POST...
9.PIL(Python Imaging Library Python图像库)是一个强大的图像处理标准库,功能强大却又简单易用。现在的名字叫做Pillow。可以如下安装Pillow:
1pip3 install pillow
从下面生成数字验证码的程序可以窥其一斑:
九、网络编程和电子邮件
1.网络编程主要是TCP和UDP的编程,示例见【Python网络编程】利用Python进行TCP、UDP套接字编程
2.SMTP是发送邮件的协议,Python内置对SMTP的支持,可以发送纯文本邮件、HTML邮件以及带附件的邮件。Python对SMTP支持有smtplib和email两个模块,email负责构造邮件,smtplib负责发送邮件。Python内置一个poplib模块,实现了POP3协议,可以直接用来收邮件。由于现在绝大多数大型邮件服务商都采取了反垃圾邮件措施,所以这部分的简单实验并没有成功,还需进一步研究,等遇到具体情况再说。
3.Python内嵌了sqlite数据库,还可以自行安装连接mysql,MySQL是当前最流行的开源数据库,在行业内有着广泛的应用。
十、Web开发和异步IO
1.WSGI(Web Server Gateway Interface) 服务器网关接口。
2.Python web 开发框架:
-Flask:流行的Web框架
-Django:全能型Web框架
-web.py:一个小巧的Web框架
-Bottle:和Flask类似的Web框架
-Tornado:Facebook的开源异步Web框架
3.协程
‘肆’ 【Python】浅谈python中的json
一 前言
最近一直在做开发相关的工作--基于Django的web 平台,其中需要从model层传输数据到view 层做数据展示或者做业务逻辑处理。我们采用通用的Json格式--Json(javaScript Object Notation) 是一种轻量级的数据交换格式,易于阅读和程序解析。
二 认识Json
2.1 Json 结构
常见的Json格式为 “名称/值”对的集合,其中 值可以是对象,列表,字典,字符串等等。比如
backup_data = {"back_to_host": "dbbk0",
"ip_address": "10.10.20.3",
"host_name": "rac4",
"port": 3306}
2.2 使用Json
Python的Json模块序列化与反序列化的过程分别是 编码和解码。这两个过程涉及到两组不同的函数
编码 把一个Python对象编码转换成Json字符串,json.mps(data)/json.mp(data,file_handler)
解码 把Json格式字符串解码转换成Python对象,json.loads(data)/json.load(file_handler)
在python中要使用Json模块做相关操作,必须先导入:
import Json
2.3 主要函数
编码函数主要有 json.mps(data)/json.mp(data,file_handler)
json.mps()的参数是将python对象转换为字符串,如使用json.mps序列化的对象json_mps=json.mps({'a':1, 'b':2}) ,json_mps='{"b": 2, "a": 1}'
json.mp 是将内置类型序列化为json对象后写入文件。
解码函数主要由json.loads(data)/json.load(file_handler)
json.loads的参数是内存对象,把Json格式字符串解码转换成Python对象,json_loads=json.loads(d_json) #{ b": 2, "a": 1},使用load重新反序列化为dict
json.load()的参数针对文件句柄,比如本地有一个文件/tmp/test.json json_load=json.load(open('/tmp/test.json'))
具体案例参考如下:
In [3]: data={"back_to_host": "rac1",
...: "ip_address": "10.215.20.3",
...: "host_name": "rac3",
...: "port": 3306}
In [7]: json_str=json.mps(data)
In [8]: print json_str
{"ip_address": "10.215.20.3", "back_to_host": "rac1", "host_name": "rac3", "port": 3306}
In [9]: json_loads=json.load(json_str)
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-9-180506f16431> in <mole>()
----> 1 json_loads=json.load(json_str)
/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/json/__init__.pyc in load(fp, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
284
285 ""
注意 从上面的报错信息来看 json.loads 传参是字符串类型,并不是文件句柄,没有 read()属性。
In [10]: json_loads=json.loads(json_str)
In [11]: print json_loads
{u'back_to_host': u'rac1', u'ip_address': u'10.215.20.3', u'host_name': u'rac3', u'port': 3306}
In [12]: type(json_loads)
Out[12]: dict
In [13]: type(json_str)
Out[13]: str
利用mp 将数据写入 mp.json
In [17]: with open('/tmp/mp.json','w') as f:
...: json.mp(json_str,f)
...:
yangyiDBA:~ yangyi$ cat /tmp/mp.json
"{\"ip_address\": \"10.10.20.3\", \"back_to_host\": \"rac1\", \"host_name\": \"rac3\", \"port\": 3306}"
yangyiDBA:~ yangyi$
利用json.load 将mp.sjon的数据读出来并赋值给 data
In [18]: with open('/tmp/mp.json','r') as f:
...: data=json.load(f)
...:
In [19]: print data
{"ip_address": "10.10.20.3", "back_to_host": "rac1", "host_name": "rac3", "port": 3306}
三 小结
本文算是一篇学习笔记,主要对比了json.loads/json.load , json.mps/ json.mp 的使用差异 ,方便以后更好的使用json 。
以上为本次分享内容,感谢观看。
‘伍’ var a = {}; a.b = 'c' var a = {}; a['b'] = 'c' var a = { b: 'c'} a = {b: 'c'} 有何差异 孰优孰劣
没有所谓的优劣。基本上看你的语言应该是javascript,而javascript本身并非编译语言,而是翻译语言。它并不是oopl之一,其核心还是利用的数组机制而实现oop的风格。
所以在面向对象中三大属性的封装方向并没有严格的控制,所谓的对象其实核心是一个数组(可以理解为计算机属语中的广义表),使用.的方式来实现数组调用方式,这样使用javascript看起来是一个oopl,只是形似而已。
所以var a = {}; a.b =‘C';与var a = {}; a['b']='c',其实没有区别的,只是前者在格式上更象面向对象而已。或者你可以认为.调用就是数组调用的语法糖。所以两者没有任何区别的。当然,谁优谁略在本质上是没有区别,但代码阅读习惯上来看,前者适用了oop风格,而后者只是数组或广义表的理解——除此之外没有差异。
最后一种我们多见于序列化,如松散形数据传递(JSON/JSONP)格式中常见。等于直接的写法,本质上来说,你声明数组后赋值,或在声明数组的同时赋值也没有区别的。类似的情况是var a = 5;与var a; a=5;的区别一样,没有区别。
所以三者在javascript中没有区别,只是形式上变形,适合于不同的场景下而已。所以第一种情况是对象风格编程,第二种是用来处理精数组(不管何种风格),第三种是对象序列化(json.jsonp).
这里要说明一个python,他是一个编译语言,但是它是动态语言。所谓的动态语言指的就是可动态变化。C#静态语言声明一个类,编译时你可以定义任何属性或方法,而在运行时只能使用这个属性或方法,不能再添加了。而python等动态语言上来说,编译时你可以定义,同时在运行时可能随时增加属性或方法也可以清除某个运行类的属性或方法。javascript类风格与此相似——但是翻译型语言只有运行态,并没有编译态,也就是说他是直接翻译源码运行的,不是似编译语言要生成程序或中间态语言(.net生成是的msil),所以两者还是有很多区别的。不过随着ecmascript标准的建立,使用此类语言(ECMAScript语言树)中已经具有很强大的功能了。
‘陆’ python与java用途区别有哪些
Python入门更快,但是java的运用更加广泛,所以二者各有各的优缺点,要学哪个还是要根据自己的实际需求情况来进行判断和选择。
首先来了解一下java与python各自的特点:
Java:高度面向对象的高级编程语言
设计初衷是“写一次代码,在哪里都可以用”,可以完成任何规模的任务,所以它也是很多公司在做商业级项目的时候的普遍选择。
Python:拥有简洁语法的高级编程语言
设计初衷是“让代码读起来更轻松”,并且让程序员们比起用其他语言,可以写更少的代码,事半功倍。
最后是给初入行业的新人一些学习建议:
如果你只是编程爱好者,或者把编程语言作为一个工作中的应用工具,Python是个不错的选择。如果你想在程序员的道路上稳步发展,建议先学习Java,再学python,C++,JavaScript,PHP等其他语言,会事半功倍。
一名优秀的程序员,绝不会只靠一门语言走到黑,通吃它们就完了!兼容并蓄,触类旁通,这才是一个成熟IT从业者该有的心态!
想要系统学习,你可以考察对比一下开设有相关专业的热门学校。好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。
祝学有所成!望采纳!
‘柒’ python与java用途区别有哪些
区别:
1.Python比Java简单,学习成本低,开发效率高。
2.Java运行效率高于Python,尤其是纯Python开发的程序,效率极低。
3.Java相关资料多,尤其是中文资料。
4.Java版本比较稳定,Python2和3不兼容导致大量类库失效。
5.Java开发偏向于软件工程,团队协同,Python更适合小型开发。
6.Java偏向于商业开发,Python适合于数据分析。
7.Java是一种静态类型语言,Python是一种动态类型语言。
8.Java中的所有变量需要先声明(类型)才能使用,Python中的变量不需要声明类型。
9.Java编译以后才能运行,Python直接就可以运行。
10.JAVA 里的块用大括号对包括,Python 以冒号 + 四个空格缩进表示。
11.JAVA 的类型要声明,Python 的类型不需要。
12.JAVA 每行语句以分号结束,Python 可以不写分号。
13.实现同一功能时,JAVA 要敲的键盘次数一般要比 Python 多。
相关推荐:《Python教程》
一些细节区别:
1.数
python只有四种数据:整数,长整数、浮点数和复数
java则有char,short,byte,int,long,float,double类型
2. 字符串
2.1. 字符串表示
Python中没有表示单个常量字符串类型的char类型,其可以用单引号‘ ’或双引号“ ”来表示一个字符串,也可以用三引号来表示一个多行字符串。
Java中char表示单个字符,String表示一个字符串,常量字符或字符串用双引号“ ”表示。
2.2. 多行字符串
Python在字符串末尾加上反斜杠(/)表示字符串在下一行继续。
Java用加号(+)表示字符串在下一行继续。
2.3. Python中其它的表示方法
Python中还有可以在字符串前加前缀r或R:表示自然字符串,即不对字符串做转移处理比java方便。
Python可以加前缀u或U:表示unicode字符串。
注意: Python 中的__init__()方法类似与Java中的构造函数,Java构造函数中的self默认存在,不需要在构造函数声明的时候进行显示指明,但是Python需要在__init__()函数中显示指明(但是ID调用时不用显示进行self传递)。
3. 操作符
Python中**表示幂计算,如果 X**y表示 Xy
Python中//表示整除,即商的整数部分
Python中~表示按位翻转,~x就是-(x+1)
4. 对象的序列化表示
Python中可以使用str()或repr()函数来实现对象的序列化。
Java中通过toString()方法来实现对象的序列化。
注意:序列化 (Serialization)将对象的状态信息转换为可以存储或传输的形式的过程。
‘捌’ python中pickle模块的作用是什么为什么不直接把数据存到文件中
Pickle模块中最常用的函数为:
(1)pickle.mp(obj, file, [,protocol])
函数的功能:将obj对象序列化存入已经打开的file中。
参数讲解:
obj:想要序列化的obj对象。
file:文件名称。
protocol:序列化使用的协议。如果该项省略,则默认为0。如果为负值或HIGHEST_PROTOCOL,则使用最高的协议版本。
file:文件名称。
obj:想要序列化的obj对象。
protocal:如果该项省略,则默认为0。如果为负值或HIGHEST_PROTOCOL,则使用最高的协议版本。
(2)pickle.load(file)
函数的功能:将file中的对象序列化读出。
参数讲解:
(3)pickle.mps(obj[, protocol])
函数的功能:将obj对象序列化为string形式,而不是存入文件中。
参数讲解:
(4)pickle.loads(string)
函数的功能:从string中读出序列化前的obj对象。
‘玖’ python哪些标准库
标准库比较多 功能也不同:
标准库
sys
系统相关的参数和函数。 sys 库一般用来访问和修改系统相关信息,比如查看 python 版本、系统环境变量、模块信息和 python 解释器相关信息等等。
os
操作系统接口模块。这个库提供了访问操作系统相关依赖的方式,比如输入输出操作、读写操作、操作系统异常错误信息、进程线程管理、文件管理、调度程序等等。
re
正则表达式操作。这个库是我喜欢并且经常会用到的库,在对大量字符串进行处理的时候用正则表达式是最快速有效的方式,但是正则表达式的学习曲线较高,有兴趣的朋友可以访问这个网站学习。
math
数学函数库。 math 库提供了对 C 语言标准定义的数学函数访问,比如数论(Number-theoretic)的各种表示方法、幂和对数函数(Power and logarithmic functions)、三角函数(Trigonometric functions)、常量圆周率(π)和自然常数(e)等等。
random
生成伪随机数。
伪随机数与随机数(真随机数)不同的是执行环境,随机数是真实世界中通过物理过程实践得出结论,而伪随机数是通过计算机的特定算法生成的数,所以这个过程是可预测的、有规律的,只是循环周期较长,并不能与现实场景相切合。
random库提供生成随机数,可以模拟现实世界中随机取数、随机抽奖等等。
logging
日志记录工具。这个库提供了对应用程序和库函数的日志记录,日常开发中我们经常需要通过日志打印出当前程序的运行状态,实时查看可能出现的堆栈异常和错误信息。
json
Json 编码和解码器。 json 库提供了对 json 数据的支持,日常开发中我们做前后端分离需要对传输数据 json 进行序列化和反序列化操作,以保证对数据的完整性和有效性,而序列化和反序列化其实就是编码和解码的过程。
pickle
Python 对象序列化库。 pickle 库支持对 python 对象进行序列化和反序列化操作,当我们需要将处理好的对象保存到文件或数据库中时,就可以将其序列化成二进制数据,从而更好的保存起来。
shelve
Python 对象持久化。简单的数据存储方案。
socket
底层网络接口。 socket(套接字) 库提供了标准的BSD(伯克利套接字) Socket API,可以通过访问底层操作系统 Socket 的相关接口进行网络通讯。
datetime
基本日期和时间类型库。该库提供了各种简单和复杂的方式处理日期和时间,日常我们会用时间测算时间消耗、复杂度,对存储的创建时间和修改时间也需要进一步说明,对计时器的描述和控制也需要用到该库。
hashlib
安全哈希和消息摘要。摘要算法 其实就是对某些数据进行加密(不可逆的加密算法),因为被加密的数据无法破解,所以就能防止被篡改。常见的摘要算法有 MD5、SHA1,一般我们会用 MD5 对用户口令进行加密,防止盗用后被轻易破解;而 SHA1 与 MD5 类似,但是 SHA1 会产生更长的长度,也更安全,但是算法的复杂性通常伴随着存储空间和时间的消耗。要说比SHA1更长的字符长度,还有 SHA224、SHA256、SHA384 和 SHA512,看名字就能知道。
大家都知道无论算法生成的字符长度如何都有可能发生碰撞(被破解),这是不可避免的,所以具体场景具体情况而定。
configparser
配置文件解析器。 configparser 库可以轻松定制配置文件,通过解析配置文件的信息我们就可以全局访问相关配置。
urllib
URL 处理模块。 urllib 库集成了处理 URLs(统一资源定位符)的各种模块:
URL urllib.request URL robots.txt urllib 库对访问网络有很好的支持,提供了对数据的访问和处理、文件的上传和下载、记录 cookie 和 session 等等。
itertools
为高效循环而创建迭代器的函数。 itertools 库也是经常需要用到,当我们要对某些数进行 for-in 时就需要先将其处理成一个可迭代对象,之后我们才能进行遍历操作。
collections
容器数据类型库。 collections 库提供了对所有容器数据类型的支持,包括 dict, list, set 和 tuple。我们可以用此库对不同数据类型进行操作,常有的函数方法有这些:
namedtuple() 创建命名元组子类的工厂函数 deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop) ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面 Counter 字典的子类,提供了可哈希对象的计数功能 OrderedDict 字典的子类,保存了他们被添加的顺序 defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值 UserDict 封装了字典对象,简化了字典子类化 UserList 封装了列表对象,简化了列表子类化 UserString 封装了列表对象,简化了字符串子类化 functools
高阶函数和可调用对象上的操作。该库主要调用高阶函数,是常规函数的一种补充。目前库中包含以下几种函数:
cmp_to_key lru_cache total_ordering partial partialmethod rece singledispatch update_wrapper wraps threading
线程并行库。 threading 库支持线程和多线程的操作,针对多线程并发的问题可以给数据加同步锁,一次只能让一个线程处理数据,从而避免出现数据读写混乱。
在 CPython 解释器上,因为GIL(全局解释器锁)锁机制的存在的,被设计成线程安全,所以同一时间只能执行一个线程,这就导致了多线程不能发挥出计算机的多核特性。
multiprocessing
进程并行库。 multiprocessing 库与 threading 库很类似,不同的是进程库可以创建子进程避开 GIL,从而弥补线程库存在的劣势和发挥计算机的多核特性。
timeit
测量小代码片段的执行时间。此库主要用来计算运行代码的时间消耗,支持多种方式传入参数。
atexit
退出处理器。当处理一个函数需要立马退出时可以使用该库。
abc
抽象基类。 abc 库定义抽象基类,以便其他类派生出新类。比如 collections 容器库中就有此派生出的 collections.abc 类,派生出来的类可以进一步实现。
asyncio
异步IO库。 asyncio 库是一个用 async/await 关键字编写并发的库,为多个异步框架提供基础功能,能够实现高性能的网络、Web服务器、数据库连接和分布式任务队列等。
浅层和深层复制操作。 库提供对对象的拷贝,我们都知道要制作对象副本,是无法通过简单值传递创建新变量的方式做到,因为新变量所指向的内存空间依旧是原对象本身,所以对新变量进行任何操作都会改变原对象。那么, 库就提供了制作对象副本的各种方法,会开辟一个新的内存空间存放副本对象,修改操作不会对原对象有任何干预。
csv
csv(Comma Separated Values)文件读写库。此库支持以纯文本的形式存储表格数据(数字和文本)。
operator
标准运算符替代函数库。此库是将 python 自有的运算符作为有效函数,比如表达式 x+y 可以用函数 operator.add(x, y) 表示;比如表达式 a*b 可以用函数 operator.mul(a, b) 表示,等等。
enum
枚举库。 enum 库支持创建枚举类来存储大量同类型的不可变常量,以便其他函数调用。创建出来的枚举类是可迭代对象,所以可以用 for-in 枚举出所有常量。
heapq
堆队列算法。这个模块提供了堆队列算法的实现,也称为优先队列算法。优先队列中的每个元素都有各自的优先级,优先级最高的元素最先得到服务。所以当我们要求前n最大/最小值的时候就可以用此算法来实现, heapq 库中也提供了相应函数实现。
http
HTTP 模块。 http 模块是一个包,收集了多个处理超文本传输协议的模块:
urllib.request http 模块通过 http.HTTPStatus 枚举定义了HTTP状态码 以及相关联消息。
profile、pstats
性能分析工具。 profile 模块提供了 profile 和 cProfile 两种不同实现的性能分析工具,可用来描述程序各个部分的执行时间和频率,统计后的信息可以通过 pstats 模块保存并使用。
ssl
TLS/SSL(传输安全协议)。此模块提供对安全协议的支持,通过应用上下文,可将 TLS(传输层安全性协议)或其前身 SSL(安全套接层)支持安全协议,能为互联网通信提供安全和数据完整性保障。一般 HTTPS 协议都支持 TLS/SSL 加密。
unitest
单元测试框架。 unitest 库常用于单元测试,受到 JUnit 和其他主流测试库的启发, unitest 库的功能和函数与它们有着相似的风格。
uuid
UUID库。 uuid 库主要用途是生成随机字符串,库中有多个版本的 UUID 对象方法,比如版本 1、3、4 和 5 的 uuid1() 、 uuid3() 、 uuid4() 和 uuid5() 。需要注意的是,如果要生成随机字符串,可以使用 uuid1() 和 uuid4() ,但是 uuid1() 会存在隐私风险,因为生成的原理里边包含用户访问计算机的网络地址,而 uuid4() 是通过随机字符生成。
希望可以帮助到你。
‘拾’ python3 对象 |字典|json|yaml|字符串 相互转化
在研究 k8s 的yaml 配置文件的时候,我总担心自己一不小心 会写错,所以我向往 使用将对象 序列化 yaml 的形式,
其实 python object 可以 直接 转 yaml ,甚至也可以 直接 转成yaml文件!!!
这里 会经常用到几个 函数 vars() ast.
我们先尝试用最笨的方法 实现 object到yaml 的转化
在python对象 convert to dict 的形式,使用 vars()函数
然后 dict convert to json 使用 json.mps(dict)函数
然后 json converte to yaml 使用 ya= yaml.load(json.mps(dict)) 然后
再 yaml.safe_mp(ya,default_flow_style=False)
至此我们看到 从 python Object ---> dict ----> json ---> yaml 的转化
其中 obj dict json yaml 转 string ,只要 str()函数即可,或者 str(vars())结合
yaml 格式 写入到文件 ,需要注意的是, open()函数 的mode 一定要是 'w' ,不能是’wb', b代表是二进制写入
yaml 写入的是dict str,使用 ‘wb' 会报错,[yaml TypeError: a bytes-like object is required, not 'str']
【出现该错误往往是通过open()函数打开文本文件时,使用了‘rb’属性,如:fileHandle=open(filename,'rb'),则此时是通过二进制方式打开文件的,所以在后面处理时如果使用了str()函数,就会出现该错误,该错误不会再python2中出现。
具体解决方法有以下两种:
第一种,在open()函数中使用‘r’属性,即文本方式读取,而不是‘rb’,以二进制文件方式读取,可以直接解决问题。
第二种,在open()函数中使用‘rb’,可以在使用之前进行转换,有以下实例,来自: http://stackoverflow.com/questions/33054527/python-3-5-typeerror-a-bytes-like-object-is-required-not-str 】
其实 python object 可以 直接 转 yaml ,甚至也可以 直接 转成yaml文件!!!
比如我已经定义了一个 Dog python class,他有 好几个属性 并已经赋值初始化了
另外生成 yaml 对象
生成yaml文件
结果是
反过来 yaml ----> json ---> 持久化 json 文件 indent=1属性是为了让 json 不以单行展示,而是展开
注意的是 python 的 dict 和set 很相似 ,都是 { }, set 里是list, dict 是键值对
【# set object is not JSON serializable [plicate]
】
打开 demo.json
yaml ---> dict
yaml ---> python object
json --> dict
json.loads()
dict--> json
json.jumps()
str ---> dict
newdict=dict(str)
json -- > python object
一个python object无法直接与json转化,只能先将对象转化成dictionary,再转化成json;对json,也只能先转换成dictionary,再转化成object,通过实践,源码如下:
yaml --> python object
对yaml,也只能先转换成json --->dictionary,再转化成object,通过实践,源码如下:
dict -- ->python object
python对象 默认都有一个 私有的属性 dict 取值 就是 object的 字典形式, 赋值就就可以给对象属性对应赋值
例如json 转 对象
对象 转 json
Python之dict(或对象)与json之间的互相转化
在Python语言中,json数据与dict字典以及对象之间的转化,是必不可少的操作。
dict字典转json数据
对象转json数据
json数据转成dict字典
json数据转成对象
json的load()与mp()方法的使用
mp()方法的使用