当前位置:首页 » 编程语言 » python中的array函数

python中的array函数

发布时间: 2022-11-12 08:03:11

python如何调用函数中的数组

python调用函数中的数组的方法:

在函数里面使用global定义一个全局变量,然后将数组赋值给这个变量,调用该函数,带有数组的的这个全局变量就可以直接使用了

示例如下:

执行结果如下:

更多Python知识,请关注:Python自学网!!

⑵ Python中numpy.array函数有啥作用呢

答: 把我们定义的普通数组转化为Numpy中的array类型,这样做的好处就在于可以使用该类型定义的多种数组方法,比如排序取其中的最大值或者最小值。我们就不需要从头开始实现,直接调用相关的API就行。

⑶ numpy基础——ndarray对象

numpy 是使用python进行数据分析不可或缺的第三方库,非常多的科学计算工具都是基于 numpy 进行开发的。

ndarray对象是用于存放同类型元素的多维数组,是numpy中的基本对象之一,另一个是func对象。本文主要内容是: 1 、简单介绍ndarray对象 2、ndarray对象的常用属性 3、如何创建ndarray对象 4、ndarray元素访问
它的维度以及个维度上的元素个数由 shape 决定。

标题中的函数就是numpy的构造函数,我们可以使用这个函数创建一个ndarray对象。构造函数有如下几个可选参数:

实例:

接下来介绍ndarray对象最常用的属性

实例:

使用 array 函数,从常规的python列表或者元组中创建数组,元素的类型由原序列中的元素类型确定。

实例:

subok 为 True ,并且object是ndarray子类时(比如矩阵类型),返回的数组保留子类类型

某些时候,我们在创建数组之前已经确定了数组的维度以及各维度的长度。这时我们就可以使用numpy内建的一些函数来创建ndarray。
例如:函数 ones 创建一个全1的数组、函数 zeros 创建一个全0的数组、函数 empty 创建一个内容随机的数组,在默认情况下,用这些函数创建的数组的类型都是float64,若需要指定数据类型,只需要闲置 dtype 参数即可:

上述三个函数还有三个从已知的数组中,创建 shape 相同的多维数组: ones_like 、 zeros_like 、 empty_like ,用法如下:

除了上述几个用于创建数组的函数,还有如下几个特殊的函数:

特别地, eye 函数的全1的对角线位置有参数k确定
用法如下:

除了上面两个函数还有其他几个类似的从外部获取数据并创建ndarray,比如: frombuffer 、 fromfile 、 fromiter ,还没用过,等用到了在详细记录

ndarray提供了一些创建二维数组的特殊函数。numpy中matrix是对二维数组ndarray进行了封装之后的子类。这里介绍的关于二维数组的创建,返回的依旧是一个ndarray对象,而不是matrix子类。关于matrix的创建和操作,待后续笔记详细描述。为了表述方便,下面依旧使用 矩阵 这一次来表示创建的二维数组。

对于一维的ndarray可以使用python访问内置list的方式进行访问:整数索引、切片、迭代等方式
关于ndarray切片
与内置list切片类似,形式:
array[beg:end:step]
beg: 开始索引
end: 结束索引(不包含这个元素)
step: 间隔
需要注意的是

特别注意的是,ndarray中的切片返回的数组中的元素是原数组元素的索引,对返回数组元素进行修改会影响原数组的值

除了上述与list相似的访问元素的方式,ndarray有一种通过 列表 来指定要从ndarray中获取元素的索引,例如:

多维ndarray中,每一维都叫一个轴axis。在ndarray中轴axis是非常重要的,有很多对于ndarray对象的运算都是基于axis进行,比如sum、mean等都会有一个axis参数(针对对这个轴axis进行某些运算操作),后续将会详细介绍。
对于多维数组,因为每一个轴都有一个索引,所以这些索引由逗号进行分割,例如:

需要注意的是

多维数组的迭代
可以使用ndarray的 flat 属性迭代数组中每一个元素

⑷ 对Python中数组的几种使用方法总结

对Python中数组的几种使用方法总结
今天小编就为大家分享一篇对Python中数组的几种使用方法总结,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
二维数组的初始化
matirx_done = [[0 for i in range(0, len(matirx))]for j in range(0, len(matirx[0]))]
就将其初始化为一个与matrix相同大小的元素全为 0 的矩阵
数组的多级排序
在数组 idea_collect = [[3, 1, 2], [3, 2, 1], [3, 2, 2], [3, 1, 1]] 中, 先按照第二项排列, 再按照第三项倒序排列 可写为:
idea_collect.sort(key=lambda x: (x[1], -x[2]))
其中, x[1] 代表第二项正序排列, -x[2] 代表第三项倒序排列
排列结果为 [[3, 1, 2], [3, 1, 1], [3, 2, 2], [3, 2, 1]]
在一个 class 中多个函数不传参使用同一个数组
如例所示:
class Partition:
def __init__(self):
self.num_complete = []

def partition(self, num, start, end):
self.num_compelete = num

def partition_core(self):
del self.num_compelete[0]
其中,self.num_compelete就是 class 中两个函数同时可以直接调用的数组, 不过最好先在def __init__中声明这个数组
以上这篇对Python中数组的几种使用方法总结就是小编分享给大家的全部内容了

⑸ python中array函数怎么用

  1. 导入array

  2. 调用array方法

  3. 操作数组元素

from array import array

a = array('i', [1, 2, 3, 4, 5, 6, 7])
a.append(8)
a.append(2)
print(a)
print(a.count(2))
a.pop()
print(a)

a.remove(3)
print(a)
print(a.index(5))

运行实例,查看结果

⑹ python里x=randn mat=x.T.dot 是求什么

x=randn这个写法是不对的。

randn是numpy里的一个生成随机array的函数。

比如说要生成一个三行两列的随机array,可以这样写:


import numpy

x = numpy.random.randn(3,2)

像这样:

dot(2)是点乘常数就不说了,

那个x.T.dot([1,2,3])就是x.T的

1*1+2*2+3*3=14

2*1+3*2+4*3=20


懂了木有 =。=

⑺ python中用numpy的array操作问题

c=np.vstack((a,b))

⑻ python数组求和

在数组和矩阵中使用sum: 对数组b和矩阵c,代码b.sum(),np.sum(b),c.sum(),np.sum(c)都能将b、c中的所有元素求和并返回单个数值。

但是对于二维数组b,代码b.sum(axis=0)指定对数组b对每列求和,b.sum(axis=1)是对每行求和,返回的都是一维数组(维度降了一维)。

而对应矩阵c,c.sum(axis=0)和c.sum(axis=1)也能实现对列和行的求和,但是返回结果仍是二维矩阵。

# 定义函数,arr 为数组,n 为数组长度,可作为备用参数,这里没有用到。

def_sum(arr,n):

# 使用内置的 sum 函数计算。

return(sum(arr))

# 调用函数

arr=[]

# 数组元素

arr=[12,3,4,15]

# 计算数组元素的长度

n=len(arr)

ans=_sum(arr,n)

# 输出结果

print('数组元素之和为',ans)

(8)python中的array函数扩展阅读:

python数组使用:

python 数组支持所有list操作,包括 .pop、.insert 和 .extend。另外,数组还提供从文件,读取和存入文件的更快的方法,列如如 .frombytes 和 .tofile,如下所示我们定义一个数组。

from array import arrayarr=array('d',(a for a in range(5)))print(arr)。

arr=array('d',(a for a in range(5)))从这个代码中可以看出,一个数组的定义需要传入的不只是值还有类型。

可以是(must be c, b, B, u, h, H, i, I, l, L, f or d)。



⑼ Python基础 numpy中的常见函数有哪些

有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家。

Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。

数组常用函数
1.where()按条件返回数组的索引值
2.take(a,index)从数组a中按照索引index取值
3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组,元素个数为N个
4.a.fill()将数组的所有元素以指定的值填充
5.diff(a)返回数组a相邻元素的差值构成的数组
6.sign(a)返回数组a的每个元素的正负符号
7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引

改变数组维度
a.ravel(),a.flatten():将数组a展平成一维数组
a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组
a.transpose,a.T转置数组a

数组组合
1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合
2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合
3.row_stack((a,b))将数组a,b按行方向组合
4.column_stack((a,b))将数组a,b按列方向组合

数组分割
1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组
2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组

数组修剪和压缩
1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m
2.a.compress()返回根据给定条件筛选后的数组

数组属性
1.a.dtype数组a的数据类型
2.a.shape数组a的维度
3.a.ndim数组a的维数
4.a.size数组a所含元素的总个数
5.a.itemsize数组a的元素在内存中所占的字节数
6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型

数组计算
1.average(a,weights=v)对数组a以权重v进行加权平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差
3.a.prod()数组a的所有元素的乘积
4.a.cumprod()数组a的元素的累积乘积
5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数
6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和

以上就是numpy中的常见函数。更多Python学习推荐:PyThon学习网教学中心。

⑽ python中的list和array的不同之处

在Python中,list和array都可以根据索引来取其中的元素,但是list可以用append或者+来新增元素或者添加数组,而array不行。具体区别如下:
1、作用不同
list是处理一组有序项目的数据结构;
array数组存储单一数据类型的多维数组;
2、内置数据类型
list是Python的内置数据类型;
array数组需要导入标准库才行,不属于内置类型;
3、数据类型是否相同
list中的数据类不必相同的,即每个元素可以是不同的数据类型;
array则是由Numpy封装,存放的元素都是相同的数据类型;
4、运算
列表list不可以进行数学四则运算;
数组array可以进行数学四则运算;

热点内容
安卓系统个人字典有什么用 发布:2025-01-12 06:13:37 浏览:927
geventpython安装 发布:2025-01-12 06:13:34 浏览:337
放松解压助睡眠直播 发布:2025-01-12 06:13:00 浏览:827
车载wince和安卓哪个好用 发布:2025-01-12 05:58:18 浏览:838
vb6遍历文件夹 发布:2025-01-12 05:58:13 浏览:364
c在C语言中代表什么 发布:2025-01-12 05:52:59 浏览:46
政府PHP 发布:2025-01-12 05:34:30 浏览:651
转码算法 发布:2025-01-12 05:24:02 浏览:418
哪个国家开发安卓系统 发布:2025-01-12 05:08:58 浏览:407
华师数据库 发布:2025-01-12 05:07:03 浏览:505