当前位置:首页 » 编程语言 » python分布拟合

python分布拟合

发布时间: 2022-10-29 22:06:19

① 如何在python中实现这五类强大的概率分布

要使用Python实现一些离散和连续的概率分布。虽然我不会讨论这些分布的数学细节,但我会以链接的方式给你一些学习这些统计学概念的好资料。在讨论这些概率分布之前,我想简单说说什么是随机变量(randomvariable)。随机变量是对一次试验结果的量化。举个例子,一个表示抛硬币结果的随机变量可以表示成PythonX={1如果正面朝上,2如果反面朝上}12X={1如果正面朝上,2如果反面朝上}随机变量是一个变量,它取值于一组可能的值(离散或连续的),并服从某种随机性。随机变量的每个可能取值的都与一个概率相关联。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probabilitydistributrion)。我鼓励大家仔细研究一下scipy.stats模块。概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。离散概率分布也称为概率质量函数(probabilitymassfunction)。离散概率分布的例子有伯努利分布(Bernoullidistribution)、二项分布(binomialdistribution)、泊松分布(Poissondistribution)和几何分布(geometricdistribution)等。连续概率分布也称为概率密度函数(probabilitydensityfunction),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normaldistribution)、指数分布(exponentialdistribution)和β分布(betadistribution)等都属于连续概率分布。若想了解关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频。二项分布(BinomialDistribution)服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p。E(X)=np,Var(X)=np(1−p)如果你想知道每个函数的原理,你可以在IPython笔记本中使用helpfile命令。E(X)表示分布的期望或平均值。键入stats.binom?了解二项分布函数binom的信息。二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少?假设在该试验中正面朝上的概率为0.3,这意味着平均来说,我们可以期待有3次是硬币正面朝上的。我定义掷硬币的所有可能结果为k=np.arange(0,11):你可能观测到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf计算每次观测的概率质量函数。它返回一个含有11个元素的列表(list),这些元素表示与每个观测相关联的概率值。您可以使用.rvs函数模拟一个二项随机变量,其中参数size指定你要进行模拟的次数。我让Python返回10000个参数为n和p的二项式随机变量。我将输出这些随机变量的平均值和标准差,然后画出所有的随机变量的直方图。泊松分布(PoissonDistribution)一个服从泊松分布的随机变量X,表示在具有比率参数(rateparameter)λ的一段固定时间间隔内,事件发生的次数。参数λ告诉你该事件发生的比率。随机变量X的平均值和方差都是λ。E(X)=λ,Var(X)=λ泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少?让我们考虑这个平均每天发生2起事故的例子。泊松分布的实现和二项分布有些类似,在泊松分布中我们需要指定比率参数。泊松分布的输出是一个数列,包含了发生0次、1次、2次,直到10次事故的概率。我用结果生成了以下图片。你可以看到,事故次数的峰值在均值附近。平均来说,你可以预计事件发生的次数为λ。尝试不同的λ和n的值,然后看看分布的形状是怎么变化的。现在我来模拟1000个服从泊松分布的随机变量。正态分布(NormalDistribution)正态分布是一种连续分布,其函数可以在实线上的任何地方取值。正态分布由两个参数描述:分布的平均值μ和方差σ2。E(X)=μ,Var(X)=σ2正态分布的取值可以从负无穷到正无穷。你可以注意到,我用stats.norm.pdf得到正态分布的概率密度函数。β分布(BetaDistribution)β分布是一个取值在[0,1]之间的连续分布,它由两个形态参数α和β的取值所刻画。β分布的形状取决于α和β的值。贝叶斯分析中大量使用了β分布。当你将参数α和β都设置为1时,该分布又被称为均匀分布(uniformdistribution)。尝试不同的α和β取值,看看分布的形状是如何变化的。指数分布(ExponentialDistribution)指数分布是一种连续概率分布,用于表示独立随机事件发生的时间间隔。比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔、中文维基网络新条目出现的时间间隔等等。我将参数λ设置为0.5,并将x的取值范围设置为$[0,15]$。接着,我在指数分布下模拟1000个随机变量。scale参数表示λ的倒数。函数np.std中,参数ddof等于标准偏差除以$n-1$的值。/81321/

② python数据统计分析

1. 常用函数库

  scipy包中的stats模块和statsmodels包是python常用的数据分析工具,scipy.stats以前有一个models子模块,后来被移除了。这个模块被重写并成为了现在独立的statsmodels包。

 scipy的stats包含一些比较基本的工具,比如:t检验,正态性检验,卡方检验之类,statsmodels提供了更为系统的统计模型,包括线性模型,时序分析,还包含数据集,做图工具等等。

2. 小样本数据的正态性检验

(1) 用途

 夏皮罗维尔克检验法 (Shapiro-Wilk) 用于检验参数提供的一组小样本数据线是否符合正态分布,统计量越大则表示数据越符合正态分布,但是在非正态分布的小样本数据中也经常会出现较大的W值。需要查表来估计其概率。由于原假设是其符合正态分布,所以当P值小于指定显着水平时表示其不符合正态分布。

 正态性检验是数据分析的第一步,数据是否符合正态性决定了后续使用不同的分析和预测方法,当数据不符合正态性分布时,我们可以通过不同的转换方法把非正太态数据转换成正态分布后再使用相应的统计方法进行下一步操作。

(2) 示例

(3) 结果分析

 返回结果 p-value=0.029035290703177452,比指定的显着水平(一般为5%)小,则拒绝假设:x不服从正态分布。

3. 检验样本是否服务某一分布

(1) 用途

 科尔莫戈罗夫检验(Kolmogorov-Smirnov test),检验样本数据是否服从某一分布,仅适用于连续分布的检验。下例中用它检验正态分布。

(2) 示例

(3) 结果分析

 生成300个服从N(0,1)标准正态分布的随机数,在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。最终返回的结果,p-value=0.9260909172362317,比指定的显着水平(一般为5%)大,则我们不能拒绝假设:x服从正态分布。这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。如果p-value小于我们指定的显着性水平,则我们可以肯定地拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。

4.方差齐性检验

(1) 用途

 方差反映了一组数据与其平均值的偏离程度,方差齐性检验用以检验两组或多组数据与其平均值偏离程度是否存在差异,也是很多检验和算法的先决条件。

(2) 示例

(3) 结果分析

 返回结果 p-value=0.19337536323599344, 比指定的显着水平(假设为5%)大,认为两组数据具有方差齐性。

5. 图形描述相关性

(1) 用途

 最常用的两变量相关性分析,是用作图描述相关性,图的横轴是一个变量,纵轴是另一变量,画散点图,从图中可以直观地看到相关性的方向和强弱,线性正相关一般形成由左下到右上的图形;负面相关则是从左上到右下的图形,还有一些非线性相关也能从图中观察到。

(2) 示例

(3) 结果分析

 从图中可以看到明显的正相关趋势。

6. 正态资料的相关分析

(1) 用途

 皮尔森相关系数(Pearson correlation coefficient)是反应两变量之间线性相关程度的统计量,用它来分析正态分布的两个连续型变量之间的相关性。常用于分析自变量之间,以及自变量和因变量之间的相关性。

(2) 示例

(3) 结果分析

 返回结果的第一个值为相关系数表示线性相关程度,其取值范围在[-1,1],绝对值越接近1,说明两个变量的相关性越强,绝对值越接近0说明两个变量的相关性越差。当两个变量完全不相关时相关系数为0。第二个值为p-value,统计学上,一般当p-value<0.05时,可以认为两变量存在相关性。

7. 非正态资料的相关分析

(1) 用途

 斯皮尔曼等级相关系数(Spearman’s correlation coefficient for ranked data ),它主要用于评价顺序变量间的线性相关关系,在计算过程中,只考虑变量值的顺序(rank, 值或称等级),而不考虑变量值的大小。常用于计算类型变量的相关性。

(2) 示例

(3) 结果分析

 返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关。第二个值为p-value,p-value越小,表示相关程度越显着。

8. 单样本T检验

(1) 用途

 单样本T检验,用于检验数据是否来自一致均值的总体,T检验主要是以均值为核心的检验。注意以下几种T检验都是双侧T检验。

(2) 示例

(3) 结果分析

 本例中生成了2列100行的数组,ttest_1samp的第二个参数是分别对两列估计的均值,p-value返回结果,第一列1.47820719e-06比指定的显着水平(一般为5%)小,认为差异显着,拒绝假设;第二列2.83088106e-01大于指定显着水平,不能拒绝假设:服从正态分布。

9. 两独立样本T检验

(1) 用途

 由于比较两组数据是否来自于同一正态分布的总体。注意:如果要比较的两组数据不满足方差齐性, 需要在ttest_ind()函数中添加参数equal_var = False。

(2) 示例

(3) 结果分析

 返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.19313343989106416,比指定的显着水平(一般为5%)大,不能拒绝假设,两组数据来自于同一总结,两组数据之间无差异。

10. 配对样本T检验

(1) 用途

 配对样本T检验可视为单样本T检验的扩展,检验的对象由一群来自正态分布独立样本更改为二群配对样本观测值之差。它常用于比较同一受试对象处理的前后差异,或者按照某一条件进行两两配对分别给与不同处理的受试对象之间是否存在差异。

(2) 示例

(3) 结果分析

 返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.80964043445811551,比指定的显着水平(一般为5%)大,不能拒绝假设。

11. 单因素方差分析

(1) 用途

 方差分析(Analysis of Variance,简称ANOVA),又称F检验,用于两个及两个以上样本均数差别的显着性检验。方差分析主要是考虑各组之间的平均数差别。

 单因素方差分析(One-wayAnova),是检验由单一因素影响的多组样本某因变量的均值是否有显着差异。

 当因变量Y是数值型,自变量X是分类值,通常的做法是按X的类别把实例成分几组,分析Y值在X的不同分组中是否存在差异。

(2) 示例

(3) 结果分析

 返回结果的第一个值为统计量,它由组间差异除以组间差异得到,上例中组间差异很大,第二个返回值p-value=6.2231520821576832e-19小于边界值(一般为0.05),拒绝原假设, 即认为以上三组数据存在统计学差异,并不能判断是哪两组之间存在差异 。只有两组数据时,效果同 stats.levene 一样。

12. 多因素方差分析

(1) 用途

 当有两个或者两个以上自变量对因变量产生影响时,可以用多因素方差分析的方法来进行分析。它不仅要考虑每个因素的主效应,还要考虑因素之间的交互效应。

(2) 示例

(3) 结果分析

 上述程序定义了公式,公式中,"~"用于隔离因变量和自变量,”+“用于分隔各个自变量, ":"表示两个自变量交互影响。从返回结果的P值可以看出,X1和X2的值组间差异不大,而组合后的T:G的组间有明显差异。

13. 卡方检验

(1) 用途

 上面介绍的T检验是参数检验,卡方检验是一种非参数检验方法。相对来说,非参数检验对数据分布的要求比较宽松,并且也不要求太大数据量。卡方检验是一种对计数资料的假设检验方法,主要是比较理论频数和实际频数的吻合程度。常用于特征选择,比如,检验男人和女人在是否患有高血压上有无区别,如果有区别,则说明性别与是否患有高血压有关,在后续分析时就需要把性别这个分类变量放入模型训练。

 基本数据有R行C列, 故通称RC列联表(contingency table), 简称RC表,它是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。

(2) 示例

(3) 结果分析

 卡方检验函数的参数是列联表中的频数,返回结果第一个值为统计量值,第二个结果为p-value值,p-value=0.54543425102570975,比指定的显着水平(一般5%)大,不能拒绝原假设,即相关性不显着。第三个结果是自由度,第四个结果的数组是列联表的期望值分布。

14. 单变量统计分析

(1) 用途

 单变量统计描述是数据分析中最简单的形式,其中被分析的数据只包含一个变量,不处理原因或关系。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况,并找出数据的分布模型。

 单变量数据统计描述从集中趋势上看,指标有:均值,中位数,分位数,众数;从离散程度上看,指标有:极差、四分位数、方差、标准差、协方差、变异系数,从分布上看,有偏度,峰度等。需要考虑的还有极大值,极小值(数值型变量)和频数,构成比(分类或等级变量)。

 此外,还可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图。

15. 多元线性回归

(1) 用途

 多元线性回归模型(multivariable linear regression model ),因变量Y(计量资料)往往受到多个变量X的影响,多元线性回归模型用于计算各个自变量对因变量的影响程度,可以认为是对多维空间中的点做线性拟合。

(2) 示例

(3) 结果分析

 直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显着性,P<0.05则认为自变量具有统计学意义,从上例中可以看到收入INCOME最有显着性。

16. 逻辑回归

(1) 用途

 当因变量Y为2分类变量(或多分类变量时)可以用相应的logistic回归分析各个自变量对因变量的影响程度。

(2) 示例

(3) 结果分析

 直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显着性,P<0.05则认为自变量具有统计学意义。

③ 建议收藏!10 种 Python 聚类算法完整操作示例

聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。完成本教程后,你将知道:

聚类分析,即聚类,是一项无监督的机器学习任务。它包括自动发现数据中的自然分组。与监督学习(类似预测建模)不同,聚类算法只解释输入数据,并在特征空间中找到自然组或群集。

群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围。

聚类可以作为数据分析活动提供帮助,以便了解更多关于问题域的信息,即所谓的模式发现或知识发现。例如:

聚类还可用作特征工程的类型,其中现有的和新的示例可被映射并标记为属于数据中所标识的群集之一。虽然确实存在许多特定于群集的定量措施,但是对所识别的群集的评估是主观的,并且可能需要领域专家。通常,聚类算法在人工合成数据集上与预先定义的群集进行学术比较,预计算法会发现这些群集。

有许多类型的聚类算法。许多算法在特征空间中的示例之间使用相似度或距离度量,以发现密集的观测区域。因此,在使用聚类算法之前,扩展数据通常是良好的实践。

一些聚类算法要求您指定或猜测数据中要发现的群集的数量,而另一些算法要求指定观测之间的最小距离,其中示例可以被视为“关闭”或“连接”。因此,聚类分析是一个迭代过程,在该过程中,对所识别的群集的主观评估被反馈回算法配置的改变中,直到达到期望的或适当的结果。scikit-learn 库提供了一套不同的聚类算法供选择。下面列出了10种比较流行的算法:

每个算法都提供了一种不同的方法来应对数据中发现自然组的挑战。没有最好的聚类算法,也没有简单的方法来找到最好的算法为您的数据没有使用控制实验。在本教程中,我们将回顾如何使用来自 scikit-learn 库的这10个流行的聚类算法中的每一个。这些示例将为您复制粘贴示例并在自己的数据上测试方法提供基础。我们不会深入研究算法如何工作的理论,也不会直接比较它们。让我们深入研究一下。

在本节中,我们将回顾如何在 scikit-learn 中使用10个流行的聚类算法。这包括一个拟合模型的例子和可视化结果的例子。这些示例用于将粘贴复制到您自己的项目中,并将方法应用于您自己的数据。

1.库安装

首先,让我们安装库。不要跳过此步骤,因为你需要确保安装了最新版本。你可以使用 pip Python 安装程序安装 scikit-learn 存储库,如下所示:

接下来,让我们确认已经安装了库,并且您正在使用一个现代版本。运行以下脚本以输出库版本号。

运行该示例时,您应该看到以下版本号或更高版本。

2.聚类数据集

我们将使用 make _ classification ()函数创建一个测试二分类数据集。数据集将有1000个示例,每个类有两个输入要素和一个群集。这些群集在两个维度上是可见的,因此我们可以用散点图绘制数据,并通过指定的群集对图中的点进行颜色绘制。这将有助于了解,至少在测试问题上,群集的识别能力如何。该测试问题中的群集基于多变量高斯,并非所有聚类算法都能有效地识别这些类型的群集。因此,本教程中的结果不应用作比较一般方法的基础。下面列出了创建和汇总合成聚类数据集的示例。

运行该示例将创建合成的聚类数据集,然后创建输入数据的散点图,其中点由类标签(理想化的群集)着色。我们可以清楚地看到两个不同的数据组在两个维度,并希望一个自动的聚类算法可以检测这些分组。

已知聚类着色点的合成聚类数据集的散点图接下来,我们可以开始查看应用于此数据集的聚类算法的示例。我已经做了一些最小的尝试来调整每个方法到数据集。3.亲和力传播亲和力传播包括找到一组最能概括数据的范例。

它是通过 AffinityPropagation 类实现的,要调整的主要配置是将“ 阻尼 ”设置为0.5到1,甚至可能是“首选项”。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法取得良好的结果。

数据集的散点图,具有使用亲和力传播识别的聚类

4.聚合聚类

聚合聚类涉及合并示例,直到达到所需的群集数量为止。它是层次聚类方法的更广泛类的一部分,通过 AgglomerationClustering 类实现的,主要配置是“ n _ clusters ”集,这是对数据中的群集数量的估计,例如2。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组。

使用聚集聚类识别出具有聚类的数据集的散点图

5.BIRCHBIRCH

聚类( BIRCH 是平衡迭代减少的缩写,聚类使用层次结构)包括构造一个树状结构,从中提取聚类质心。

它是通过 Birch 类实现的,主要配置是“ threshold ”和“ n _ clusters ”超参数,后者提供了群集数量的估计。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个很好的分组。

使用BIRCH聚类确定具有聚类的数据集的散点图

6.DBSCANDBSCAN

聚类(其中 DBSCAN 是基于密度的空间聚类的噪声应用程序)涉及在域中寻找高密度区域,并将其周围的特征空间区域扩展为群集。

它是通过 DBSCAN 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,尽管需要更多的调整,但是找到了合理的分组。

使用DBSCAN集群识别出具有集群的数据集的散点图

7.K均值

K-均值聚类可以是最常见的聚类算法,并涉及向群集分配示例,以尽量减少每个群集内的方差。

它是通过 K-均值类实现的,要优化的主要配置是“ n _ clusters ”超参数设置为数据中估计的群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组,尽管每个维度中的不等等方差使得该方法不太适合该数据集。

使用K均值聚类识别出具有聚类的数据集的散点图

8.Mini-Batch

K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的样本而不是整个数据集对群集质心进行更新,这可以使大数据集的更新速度更快,并且可能对统计噪声更健壮。

它是通过 MiniBatchKMeans 类实现的,要优化的主配置是“ n _ clusters ”超参数,设置为数据中估计的群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,会找到与标准 K-均值算法相当的结果。

带有最小批次K均值聚类的聚类数据集的散点图

9.均值漂移聚类

均值漂移聚类涉及到根据特征空间中的实例密度来寻找和调整质心。

它是通过 MeanShift 类实现的,主要配置是“带宽”超参数。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以在数据中找到一组合理的群集。

具有均值漂移聚类的聚类数据集散点图

10.OPTICSOPTICS

聚类( OPTICS 短于订购点数以标识聚类结构)是上述 DBSCAN 的修改版本。

它是通过 OPTICS 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法在此数据集上获得合理的结果。

使用OPTICS聚类确定具有聚类的数据集的散点图

11.光谱聚类

光谱聚类是一类通用的聚类方法,取自线性线性代数。

它是通过 Spectral 聚类类实现的,而主要的 Spectral 聚类是一个由聚类方法组成的通用类,取自线性线性代数。要优化的是“ n _ clusters ”超参数,用于指定数据中的估计群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,找到了合理的集群。

使用光谱聚类聚类识别出具有聚类的数据集的散点图

12.高斯混合模型

高斯混合模型总结了一个多变量概率密度函数,顾名思义就是混合了高斯概率分布。它是通过 Gaussian Mixture 类实现的,要优化的主要配置是“ n _ clusters ”超参数,用于指定数据中估计的群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我们可以看到群集被完美地识别。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的。

使用高斯混合聚类识别出具有聚类的数据集的散点图

在本文中,你发现了如何在 python 中安装和使用顶级聚类算法。具体来说,你学到了:

④ 121 11 个案例掌握 Python 数据可视化--星际探索

星空是无数人梦寐以求想了解的一个领域,远古的人们通过肉眼观察星空,并制定了太阴历,指导农业发展。随着现代科技发展,有了更先进的设备进行星空的探索。本实验获取了美国国家航空航天局(NASA)官网发布的地外行星数据,研究及可视化了地外行星各参数、寻找到了一颗类地行星并研究了天体参数的相关关系。
输入并执行魔法命令 %matplotlib inline, 设置全局字号,去除图例边框,去除右侧和顶部坐标轴。

本数据集来自 NASA,行星发现是 NASA 的重要工作之一,本数据集搜集了 NASA 官网发布的 4296 颗行星的数据,本数据集字段包括:

导入数据并查看前 5 行。

截至 2020 年 10 月 22 日 全球共发现 4296 颗行星,按年聚合并绘制年度行星发现数,并在左上角绘制 NASA 的官方 LOGO 。

从运行结果可以看出,2005 年以前全球行星发现数是非常少的,经计算总计 173 颗,2014 和 2016 是行星发现成果最多的年份,2016 年度发现行星 1505 颗。

对不同机构/项目/计划进行聚合并降序排列,绘制发现行星数目的前 20 。

2009 年至 2013 年,开普勒太空望远镜成为有史以来最成功的系外行星发现者。在一片天空中至少找到了 1030 颗系外行星以及超过 4600 颗疑似行星。当机械故障剥夺了该探测器对于恒星的精确定位功能后,地球上的工程师们于 2014 年对其进行了彻底改造,并以 K2 计划命名,后者将在更短的时间内搜寻宇宙的另一片区域。

对发现行星的方式进行聚合并降序排列,绘制各种方法发现行星的比例,由于排名靠后的几种方式发现行星数较少,因此不显示其标签。

行星在宇宙中并不会发光,因此无法直接观察,行星发现的方式多为间接方式。从输出结果可以看出,发现行星主要有以下 3 种方式,其原理如下:

针对不同的行星质量,绘制比其质量大(或者小)的行星比例,由于行星质量量纲分布跨度较大,因此采用对数坐标。

从输出结果可以看出,在已发现的行星中,96.25% 行星的质量大于地球。(图中横坐标小于 e 的红色面积非常小)

通过 sns.distplot 接口绘制全部行星的质量分布图。

从输出结果可以看出,所有行星质量分布呈双峰分布,第一个峰在 1.8 左右(此处用了对数单位,表示大约 6 个地球质量),第二个峰在 6.2 左右(大概 493 个地球质量)。

针对不同发现方式发现的行星,绘制各行星的公转周期和质量的关系。

从输出结果可以看出:径向速度(Radial Velocity)方法发现的行星在公转周期和质量上分布更宽,而凌日(Transit)似乎只能发现公转周期相对较短的行星,这是因为两种方法的原理差异造成的。对于公转周期很长的行星,其运行到恒星和观察者之间的时间也较长,因此凌日发现此类行星会相对较少。而径向速度与其说是在发现行星,不如说是在观察恒星,由于恒星自身发光,因此其观察机会更多,发现各类行星的可能性更大。

针对不同发现方式发现的行星,绘制各行星的距离和质量的关系。

从输出结果可以看出,凌日和径向速度对距离较为敏感,远距离的行星大多是通过凌日发现的,而近距离的行星大多数通过径向速度发现的。原因是:近距离的行星其引力对恒星造成的摆动更为明显,因此更容易观察;当距离较远时,引力作用变弱,摆动效应减弱,因此很难借助此方法观察到行星。同时,可以观察到当行星质量更大时,其距离分布相对较宽,这是因为虽然相对恒星的距离变长了,但是由于行星质量的增加,相对引力也同步增加,恒星摆动效应会变得明显。

将所有行星的质量和半径对数化处理,绘制其分布并拟合其分布。
由于:

因此,从原理上质量对数与半径对数应该是线性关系,且斜率为定值 3 ,截距的大小与密度相关。

从输出结果可以看出:行星质量和行星半径在对数变换下,具有较好的线性关系。输出 fix_xy 数值可知,其关系可以拟合出如下公式:

拟合出曲线对应的行星平均密度为:

同样的方式绘制恒星质量与半径的关系。

从输出结果可以看出,恒星与行星的规律不同,其质量与半径在对数下呈二次曲线关系,其关系符合以下公式:

同样的方式研究恒星表面重力加速度与半径的关系。

从输出结果可以看出,恒星表面对数重力加速度与其对数半径呈现较好的线性关系:

以上我们分别探索了各变量的分布和部分变量的相关关系,当数据较多时,可以通过 pd.plotting.scatter_matrix 接口,直接绘制各变量的分布和任意两个变量的散点图分布,对于数据的初步探索,该接口可以让我们迅速对数据全貌有较为清晰的认识。

通过行星的半径和质量,恒星的半径和质量,以及行星的公转周期等指标与地球的相似性,寻找诸多行星中最类似地球的行星。

从输出结果可以看出,在 0.6 附近的位置出现了一个最大的圆圈,那就是我们找到的类地行星 Kepler - 452 b ,让我们了解一下这颗行星:

数据显示,Kepler - 452 b 行星公转周期为 384.84 天,半径为 1.63 地球半径,质量为 3.29 地球质量;它的恒星为 Kepler - 452 半径为太阳的 1.11 倍,质量为 1.04 倍,恒星方面数据与太阳相似度极高。
以下内容来自网络。 开普勒452b(Kepler 452b) ,是美国国家航空航天局(NASA)发现的外行星, 直径是地球的 1.6 倍,地球相似指数( ESI )为 0.83,距离地球1400光年,位于为天鹅座。
2015 年 7 月 24 日 0:00,美国国家航空航天局 NASA 举办媒体电话会议宣称,他们在天鹅座发现了一颗与地球相似指数达到 0.98 的类地行星开普勒 - 452 b。这个类地行星距离地球 1400 光年,绕着一颗与太阳非常相似的恒星运行。开普勒 452 b 到恒星的距离,跟地球到太阳的距离相同。NASA 称,由于缺乏关键数据,现在不能说 Kepler - 452 b 究竟是不是“另外一个地球”,只能说它是“迄今最接近另外一个地球”的系外行星。

在银河系经纬度坐标下绘制所有行星,并标记地球和 Kepler - 452 b 行星的位置。

类地行星,是人类寄希望移民的第二故乡,但即使最近的 Kepler-452 b ,也与地球相聚 1400 光年。

以下通过行星的公转周期和质量两个特征将所有行星聚为两类,即通过训练获得两个簇心。
定义函数-计算距离
聚类距离采用欧式距离:

定义函数-训练簇心
训练簇心的原理是:根据上一次的簇心计算所有点与所有簇心的距离,任一点的分类以其距离最近的簇心确定。依此原理计算出所有点的分类后,对每个分类计算新的簇心。

定义函数预测分类
根据训练得到的簇心,预测输入新的数据特征的分类。

开始训练
随机生成一个簇心,并训练 15 次。

绘制聚类结果
以最后一次训练得到的簇心为基础,进行行星的分类,并以等高面的形式绘制各类的边界。

从运行结果可以看出,所有行星被分成了两类。并通过上三角和下三角标注了每个类别的簇心位置。
聚类前
以下输出了聚类前原始数据绘制的图像。

⑤ 统计学入门级:常见概率分布+python绘制分布图

如果随机变量X的所有取值都可以逐个列举出来,则称X为离散型随机变量。相应的概率分布有二项分布,泊松分布。

如果随机变量X的所有取值无法逐个列举出来,而是取数轴上某一区间内的任一点,则称X为连续型随机变量。相应的概率分布有正态分布,均匀分布,指数分布,伽马分布,偏态分布,卡方分布,beta分布等。(真多分布,好恐怖~~)

在离散型随机变量X的一切可能值中,各可能值与其对应概率的乘积之和称为该随机变量X的期望值,记作E(X) 。比如有随机变量,取值依次为:2,2,2,4,5。求其平均值:(2+2+2+4+5)/5 = 3。

期望值也就是该随机变量总体的均值。 推导过程如下:
= (2+2+2+4+5)/5
= 1/5 2 3 + 4/5 + 5/5
= 3/5 2 + 1/5 4 + 1/5 5
= 0.6
2 + 0.2 4 + 0.2 5
= 60% 2 + 20% 4 + 20%*5
= 1.2 + 0.8 + 1
= 3

倒数第三步可以解释为值为2的数字出现的概率为60%,4的概率为20%,5的概率为20%。 所以E(X) = 60% 2 + 20% 4 + 20%*5 = μ = 3。

0-1分布(两点分布),它的随机变量的取值为1或0。即离散型随机变量X的概率分布为:P{X=0} = 1-p, P{X=1} = p,即:

则称随机变量X服从参数为p的0-1分布,记作X~B(1,p)。

在生活中有很多例子服从两点分布,比如投资是否中标,新生婴儿是男孩还是女孩,检查产品是否合格等等。

大家非常熟悉的抛硬币试验对应的分布就是二项分布。抛硬币试验要么出现正面,要么就是反面,只包含这两个结果。出现正面的次数是一个随机变量,这种随机变量所服从的概率分布通常称为 二项分布 。

像抛硬币这类试验所具有的共同性质总结如下:(以抛硬币为例)

通常称具有上述特征的n次重复独立试验为n重伯努利试验。简称伯努利试验或伯努利试验概型。特别地,当试验次数为1时,二项分布服从0-1分布(两点分布)。

举个栗子:抛3次均匀的硬币,求结果出现有2个正面的概率
已知p = 0.5 (出现正面的概率) ,n = 3 ,k = 2

所以抛3次均匀的硬币,求结果出现有2个正面的概率为3/8。

二项分布的期望值和方差 分别为:

泊松分布是用来描述在一 指定时间范围内或在指定的面积或体积之内某一事件出现的次数的分布 。生活中服从泊松分布的例子比如有每天房产中介接待的客户数,某微博每月出现服务器瘫痪的次数等等。 泊松分布的公式为

其中 λ 为给定的时间间隔内事件的平均数,λ = np。e为一个数学常数,一个无限不循环小数,其值约为2.71828。

泊松分布的期望值和方差 分别为:

使用Python绘制泊松分布的概率分布图:

因为连续型随机变量可以取某一区间或整个实数轴上的任意一个值,所以通常用一个函数f(x)来表示连续型随机变量,而f(x)就称为 概率密度函数 。

概率密度函数f(x)具有如下性质 :

需要注意的是,f(x)不是一个概率,即f(x) ≠ P(X = x) 。在连续分布的情况下,随机变量X在a与b之间的概率可以写成:

正态分布(或高斯分布)是连续型随机变量的最重要也是最常见的分布,比如学生的考试成绩就呈现出正态分布的特征,大部分成绩集中在某个范围(比如60-80分),很小一部分往两端倾斜(比如50分以下和90多分以上)。还有人的身高等等。

正态分布的定义 :

如果随机变量X的概率密度为( -∞<x<+∞):

则称X服从正态分布,记作X~N(μ,σ²)。其中-∞<μ<+∞,σ>0, μ为随机变量X的均值,σ为随机变量X的标准差。 正态分布的分布函数

正态分布的图形特点 :

使用Python绘制正态分布的概率分布图:

正态分布有一个3σ准则,即数值分布在(μ-σ,μ+σ)中的概率为0.6827,分布在(μ-2σ,μ+2σ)中的概率为0.9545,分布在(μ-3σ,μ+3σ)中的概率为0.9973,也就是说大部分数值是分布在(μ-3σ,μ+3σ)区间内,超出这个范围的可能性很小很小,仅占不到0.3%,属于极个别的小概率事件,所以3σ准则可以用来检测异常值。

当μ=0,σ=1时,有

此时的正态分布N(0,1) 称为标准正态分布。因为μ,σ都是确定的取值,所以其对应的概率密度曲线是一条 形态固定 的曲线。

对标准正态分布,通常用φ(x)表示概率密度函数,用Φ(x)表示分布函数:

假设有一次物理考试特别难,满分100分,全班只有大概20个人及格。与此同时语文考试很简单,全班绝大部分都考了90分以上。小明的物理和语文分别考了60分和80分,他回家后告诉家长,这时家长能仅仅从两科科目的分值直接判断出这次小明的语文成绩要比物理好很多吗?如果不能,应该如何判断呢?此时Z-score就派上用场了。 Z-Score的计算定义

即 将随机变量X先减去总体样本均值,再除以总体样本标准差就得到标准分数啦。如果X低于平均值,则Z为负数,反之为正数 。通过计算标准分数,可以将任何一个一般的正态分布转化为标准正态分布。

小明家长从老师那得知物理的全班平均成绩为40分,标准差为10,而语文的平均成绩为92分,标准差为4。分别计算两科成绩的标准分数:
物理:标准分数 = (60-40)/10 = 2
语文:标准分数 = (85-95)/4 = -2.5

从计算结果来看,说明这次考试小明的物理成绩在全部同学中算是考得很不错的,而语文考得很差。

指数分布可能容易和前面的泊松分布混淆,泊松分布强调的是某段时间内随机事件发生的次数的概率分布,而指数分布说的是 随机事件发生的时间间隔 的概率分布。比如一班地铁进站的间隔时间。如果随机变量X的概率密度为:

则称X服从指数分布,其中的参数λ>0。 对应的分布函数 为:

均匀分布的期望值和方差 分别为:

使用Python绘制指数分布的概率分布图:

均匀分布有两种,分为 离散型均匀分布和连续型均匀分布 。其中离散型均匀分布最常见的例子就是抛掷骰子啦。抛掷骰子出现的点数就是一个离散型随机变量,点数可能有1,2,3,4,5,6。每个数出现的概率都是1/6。

设连续型随机变量X具有概率密度函数:

则称X服从区间(a,b)上的均匀分布。X在等长度的子区间内取值的概率相同。对应的分布函数为:

f(x)和F(x)的图形分别如下图所示:

均匀分布的期望值和方差 分别为:

⑥ Python怎么检验数据分布

import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import numpy as np
import pydotplus
import csv
import scipy.stats as ss
game =[ ]#game是一个列表 ,你自己弄一个自己的数据列表即可
x = np.array(game)#x要处理成这个样子:
N=30
counts, bins = np.histogram(x, bins=N)
bin_width = bins[1]-bins[0]
total_count = float(sum(counts))
f, ax = plt.subplots(1, 1)
f.suptitle('query_uri')
ax.bar(bins[:-1]+bin_width/2., counts, align='center', width=.85*bin_width)
ax.grid('on')
def fit_pdf(x, name='lognorm', color='r'):
dist = getattr(ss, name) # params = shape, loc, scale
# dist = ss.gamma # 3 params
params = dist.fit(x, loc=0) # 1-day lag minimum for shipping
y = dist.pdf(bins, *params)*total_count*bin_width
sqerror_sum = np.log(sum(ci*(yi - ci)**2. for (ci, yi) in zip(counts, y)))
ax.plot(bins, y, color, lw=3, alpha=0.6, label='%s err=%3.2f' % (name, sqerror_sum))
return y
colors = ['r-', 'g-', 'r:', 'g:']
for name, color in zip(['exponweib', 't', 'gamma'], colors): # 'lognorm', 'erlang', 'chi2', 'weibull_min',
#分号后面的分布也可以打进去 线条颜色自己加
y = fit_pdf(x, name=name, color=color)
ax.legend(loc='best', frameon=False)
plt.savefig('G:\weibull216.png')
plt.show()
我之前也是考虑这个问题,这些代码能实现'exponweib', 't', 'gamma', 'lognorm', 'erlang', 'chi2', 'weibull_min',的拟合。只要自己输入game,game为一组数据即可。

⑦ python中用polyfit拟合出的函数怎么能直接调用

首先分两种情况:
1.交互窗口处执行:这个时候由于python的强制缩进,因此想要结束函数的定义只需要按两下enter即可。
2.在.py文件中编写,结束函数只需要不再缩进即可
调用函数方法相同,把函数名及参数写上就可以了,如果有返回值可以
r=functionA(var1)

附:测试代码(python3运行通过)
# -*- coding:utf-8 -*-
#author:zfxcx
def pt():
print("hello")
pt()

⑧ python+正态分布+拟合是怎么回事

高斯分布是从负无穷到正无穷的.能限制住就不是高斯分布了.或者你做个近似的,函数生成的数值如果不在[0,1],就重新随机一次

⑨ 拟合直方图与Python问题,怎么解决

用代码解决:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
import scipy.stats as st

sim = st.gamma(1,loc=0,scale=0.8) # Simulated
obs = st.gamma(2,loc=0,scale=0.7) # Observed
x = np.linspace(0,4,1000)
simpdf = sim.pdf(x)
obspdf = obs.pdf(x)
plt.plot(x,simpdf,label='Simulated')
plt.plot(x,obspdf,'r--',label='Observed')
plt.title('PDF of Observed and Simulated Precipitation')
plt.legend(loc='best')
plt.show()

plt.figure(1)
simcdf = sim.cdf(x)
obscdf = obs.cdf(x)
plt.plot(x,simcdf,label='Simulated')
plt.plot(x,obscdf,'r--',label='Observed')
plt.title('CDF of Observed and Simulated Precipitation')
plt.legend(loc='best')
plt.show()

# Inverse CDF
invcdf = interp1d(obscdf,x)
transfer_func = invcdf(simcdf)

plt.figure(2)
plt.plot(transfer_func,x,'g-')
plt.show()

热点内容
rman恢复脚本 发布:2025-01-07 20:17:35 浏览:673
modely加哪个配置 发布:2025-01-07 20:14:03 浏览:440
java的科学计算法 发布:2025-01-07 20:01:48 浏览:235
php数组相加 发布:2025-01-07 20:01:43 浏览:437
数据库基本命令 发布:2025-01-07 19:50:42 浏览:80
3d点歌系统云服务器ip地址 发布:2025-01-07 19:47:48 浏览:957
定原始算法 发布:2025-01-07 19:47:04 浏览:812
如何让编译器认定是什么段 发布:2025-01-07 19:45:39 浏览:156
c语言与c区别 发布:2025-01-07 19:45:37 浏览:968
nex5t存储卡 发布:2025-01-07 19:43:44 浏览:319