当前位置:首页 » 编程语言 » python爬虫scrapy教程

python爬虫scrapy教程

发布时间: 2022-10-23 19:12:03

1. 爬虫python入门难学吗

爬虫是大家公认的入门Python最好方式,没有之一。虽然Python有很多应用的方向,但爬虫对于新手小白而言更友好,原理也更简单,几行代码就能实现基本的爬虫,零基础也能快速入门,让新手小白体会更大的成就感。因此小编整理了新手小白必看的Python爬虫学习路线全面指导,希望可以帮到大家。
1.学习 Python 包并实现基本的爬虫过程
大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。
如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下。当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化。
2.了解非结构化数据的存储
爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。
3.学习scrapy,搭建工程化爬虫
掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备Python爬虫工程师的思维了。
4.学习数据库知识,应对大规模数据存储与提取
Python客栈送红包、纸质书
爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。
5.掌握各种技巧,应对特殊网站的反爬措施
当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。
6.分布式爬虫,实现大规模并发采集,提升效率
爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握Scrapy+ MongoDB + Redis 这三种工具。Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。
只要按照以上的Python爬虫学习路线,一步步完成,即使是新手小白也能成为老司机,而且学下来会非常轻松顺畅。所以新手在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目,直接开始操作。
其实学Python编程和练武功其实很相似,入门大致这样几步:找本靠谱的书,找个靠谱的师傅,找一个地方开始练习。
学语言也是这样的:选一本通俗易懂的书,找一个好的视频资料,然后自己装一个IDE工具开始边学边写。
7.给初学Python编程者的建议:
①信心。可能你看了视频也没在屏幕上做出点啥,都没能把程序运行起来。但是要有自信,所有人都是这样过来的。
②选择适合自己的教程。有很早的书籍很经典,但是不是很适合你,很多书籍是我们学过一遍Python之后才会发挥很大作用。
③写代码,就是不断地写,练。这不用多说,学习什么语言都是这样。总看视频,编不出东西。可以从书上的小案例开始写,之后再写完整的项目。
④除了学Python,计算机的基础也要懂得很多,补一些英语知识也行。
⑤不但会写,而且会看,看源码是一个本领,调试代码更是一个本领,就是解决问题的能力,挑错。理解你自己的报错信息,自己去解决。
⑥当你到达了一个水平,就多去看官方的文档,在CSDN上面找下有关Python的博文或者群多去交流。
希望想学习Python的利用好现在的时间,管理好自己的学习时间,有效率地学习Python,Python这门语言可以做很多事情。

2. 《精通 Python爬虫框架 Scrapy》txt下载在线阅读全文,求百度网盘云资源

《精通Python爬虫框架Scrapy》([美]迪米特里奥斯 考奇斯-劳卡斯)电子书网盘下载免费在线阅读

链接: https://pan..com/s/1bFpjRj24UfpnINODbkBcGA

提取码: qqx3

书名:《精通Python爬虫框架Scrapy》

作者:[美]迪米特里奥斯 考奇斯-劳卡斯

译者:李斌

豆瓣评分:5.9

出版社:人民邮电出版社

出版年份:2018-2-1

页数:239

内容简介:Scrapy是使用Python开发的一个快速、高层次的屏幕抓取和Web抓取框架,用于抓Web站点并从页面中提取结构化的数据。《精通Python爬虫框架Scrapy》以Scrapy 1.0版本为基础,讲解了Scrapy的基础知识,以及如何使用Python和三方API提取、整理数据,以满足自己的需求。

本书共11章,其内容涵盖了Scrapy基础知识,理解HTML和XPath,安装Scrapy并爬取一个网站,使用爬虫填充数据库并输出到移动应用中,爬虫的强大功能,将爬虫部署到Scrapinghub云服务器,Scrapy的配置与管理,Scrapy编程,管道秘诀,理解Scrapy性能,使用Scrapyd与实时分析进行分布式爬取。本书附录还提供了各种软件的安装与故障排除等内容。

本书适合软件开发人员、数据科学家,以及对自然语言处理和机器学习感兴趣的人阅读。

作者简介:作者:[美]迪米特里奥斯 考奇斯-劳卡斯(Dimitrios Kouzis-Loukas) 译者:李斌

Dimitrios Kouzis-Loukas作为一位软件开发人员,已经拥有超过15年的经验。同时,他还使用自己掌握的知识和技能,向广大读者讲授如何编写软件。

他学习并掌握了多门学科,包括数学、物理学以及微电子学。他对这些学科的透彻理解,提高了自身的标准,而不只是“实用的解决方案”。他知道真正的解决方案应当是像物理学规律一样确定,像ECC内存一样健壮,像数学一样通用。

Dimitrios目前正在使用新的数据中心技术开发低延迟、高可用的分布式系统。他是语言无关论者,不过对Python、C++和Java略有偏好。他对开源软硬件有着坚定的信念,他希望他的贡献能够造福于各个社区和全人类。

关于译者

李斌,毕业于北京科技大学计算机科学与技术专业,获得硕士学位。曾任职于阿里巴巴,当前供职于凡普金科,负责应用安全工作。热爱Python编程和Web安全,希望以更加智能和自动化的方式提升网络安全。

3. 如何在scrapy框架下,用python实现爬虫自动跳转页面来抓去网页内容

Scrapy是一个用Python写的Crawler Framework,简单轻巧,并且非常方便。Scrapy使用Twisted这个异步网络库来处理网络通信,架构清晰,并且包含了各种中间件接口,可以灵活地完成各种需求。Scrapy整体架构如下图所示:

根据架构图介绍一下Scrapy中的各大组件及其功能:

Scrapy引擎(Engine):负责控制数据流在系统的所有组建中流动,并在相应动作发生触发事件。
调度器(Scheler):从引擎接收Request并将它们入队,以便之后引擎请求request时提供给引擎。
下载器(Downloader):负责获取页面数据并提供给引擎,而后提供给Spider。
Spider:Scrapy用户编写用于分析Response并提取Item(即获取到的Item)或额外跟进的URL的类。每个Spider负责处理一个特定(或一些网站)。
Item Pipeline:负责处理被Spider提取出来的Item。典型的处理有清理验证及持久化(例如存储到数据库中,这部分后面会介绍存储到Mysql中,其他的数据库类似)。
下载器中间件(Downloader middlewares):是在引擎即下载器之间的特定钩子(special hook),处理Downloader传递给引擎的Response。其提供了一个简便的机制,通过插入自定义代码来扩展Scrapy功能(后面会介绍配置一些中间并激活,用以应对反爬虫)。
Spider中间件(Spider middlewares):是在引擎及Spider之间的特定钩子(special hook),处理Spider的输入(response)和输出(Items即Requests)。其提供了一个简便的机制,通过插入自定义的代码来扩展Scrapy功能。

4. python爬虫什么教程最好

可以看这个教程:网页链接

此教程 通过三个爬虫案例来使学员认识Scrapy框架、了解Scrapy的架构、熟悉Scrapy各模块。

此教程的大致内容:

1、Scrapy的简介。

主要知识点:Scrapy的架构和运作流程。

2、搭建开发环境:

主要知识点:Windows及linux环境下Scrapy的安装。

3、Scrapy Shell以及Scrapy Selectors的使用。

4、使用Scrapy完成网站信息的爬取。

主要知识点:创建Scrapy项目(scrapy startproject)、定义提取的结构化数据(Item)、编写爬取网站的Spider并提取出结构化数据(Item)、编写Item Pipelines来存储提取到的Item(即结构化数据)。

5. python爬虫学习教程哪个好

第一阶段

Python开发基础和核心特性1.变量及运算符2.分支及循环3.循环及字符串4.列表及嵌套列表5.字典及项目练习6.函数的使用7.递归及文件处理8.文件9.面向对象10.设计模式及异常处理11.异常及模块的使用12.坦克大战13.核心编程14.高级特性15.内存管理

第二阶段

数据库和linux基础1.并发编程2.网络通信3.MySQL4.Linux5.正则表达式

第三阶段

web前端开发基础1.html基本标签2.css样式3.css浮动和定位4.js基础5.js对象和函数6.js定时器和DOM7.js事件响应8.使用jquery9.jquery动画特效10.Ajax异步网络请求

第四阶段

Python Web框架阶段1.Django-Git版本控制2.Django-博客项目3.Django-商城项目4.Django模型层5.Django入门6.Django模板层7.Django视图层8.Tornado框架

第五阶段

Python 爬虫实战开发1.Python爬虫基础2.Python爬虫Scrapy框架

6. python网络爬虫怎么学习

现行环境下,大数据与人工智能的重要依托还是庞大的数据和分析采集,类似于淘宝 京东 网络 腾讯级别的企业 能够通过数据可观的用户群体获取需要的数据,而一般企业可能就没有这种通过产品获取数据的能力和条件,想从事这方面的工作,需掌握以下知识:
1. 学习Python基础知识并实现基本的爬虫过程
一般获取数据的过程都是按照 发送请求-获得页面反馈-解析并且存储数据 这三个流程来实现的。这个过程其实就是模拟了一个人工浏览网页的过程。
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,我们可以按照requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。
2.了解非结构化数据的存储
爬虫抓取的数据结构复杂 传统的结构化数据库可能并不是特别适合我们使用。我们前期推荐使用MongoDB 就可以。
3. 掌握一些常用的反爬虫技巧
使用代理IP池、抓包、验证码的OCR处理等处理方式即可以解决大部分网站的反爬虫策略。
4.了解分布式存储
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具就可以了。

7. 如何用Python爬取搜索引擎的结果

我选取的是爬取网络知道的html 作为我的搜索源数据,目前先打算做网页标题的搜索,选用了 Python 的 scrapy 库来对网页进行爬取,爬取网页的标题,url,以及html,用sqlist3来对爬取的数据源进行管理。
爬取的过程是一个深度优先的过程,设定四个起始 url ,然后维护一个数据库,数据库中有两个表,一个 infoLib,其中存储了爬取的主要信息:标题,url ,html;另一个表为urlLib,存储已经爬取的url,是一个辅助表,在我们爬取每个网页前,需要先判断该网页是否已爬过(是否存在urlLib中)。在数据存储的过程中,使用了SQL的少量语法,由于我之前学过 MySQL ,这块处理起来比较驾轻就熟。
深度优先的网页爬取方案是:给定初始 url,爬取这个网页中所有 url,继续对网页中的 url 递归爬取。代码逐段解析在下面,方便自己以后回顾。
1.建一个 scrapy 工程:
关于建工程,可以参看这个scrapy入门教程,通过运行:

[python] view plain
scrapy startproject ***

在当前目录下建一个scrapy 的项目,然后在 spiders 的子目录下建立一个 .py文件,该文件即是爬虫的主要文件,注意:其中该文件的名字不能与该工程的名字相同,否则,之后调用跑这个爬虫的时候将会出现错误,见ImportError。
2.具体写.py文件:

[python] view plain
import scrapy
from scrapy import Request
import sqlite3

class rsSpider(scrapy.spiders.Spider): #该类继承自 scrapy 中的 spider
name = "" #将该爬虫命名为 “知道”,在执行爬虫时对应指令将为: scrapy crawl
#download_delay = 1 #只是用于控制爬虫速度的,1s/次,可以用来对付反爬虫
allowed_domains = ["..com"] #允许爬取的作用域
url_first = 'http://..com/question/' #用于之后解析域名用的短字符串
start_urls = ["http://..com/question/647795152324593805.html", #python
"http://..com/question/23976256.html", #database
"http://..com/question/336615223.html", #C++
"http://..com/question/251232779.html", #operator system
"http://..com/question/137965104.html" #Unix programing
] #定义初始的 url ,有五类知道起始网页

#add database
connDataBase = sqlite3.connect(".db") #连接到数据库“.db”
cDataBase = connDataBase.cursor() #设置定位指针
cDataBase.execute('''''CREATE TABLE IF NOT EXISTS infoLib
(id INTEGER PRIMARY KEY AUTOINCREMENT,name text,url text,html text)''')
#通过定位指针操作数据库,若.db中 infoLib表不存在,则建立该表,其中主键是自增的 id(用于引擎的docId),下一列是文章的标题,然后是url,最后是html

#url dataBase
cDataBase.execute('''''CREATE TABLE IF NOT EXISTS urlLib
(url text PRIMARY KEY)''')
#通过定位指针操作数据库,若.db中urlLib表不存在,则建立该表,其中只存了 url,保存已经爬过的url,之所以再建一个表,是猜测表的主键应该使用哈希表存储的,查询速度较快,此处其实也可以用一个外键将两个表关联起来

2. .py文件中的parse函数:

.py文件中的parse函数将具体处理url返回的 response,进行解析,具体代码中说明:

[python] view plain
def parse(self,response):
pageName = response.xpath('//title/text()').extract()[0] #解析爬取网页中的名称
pageUrl = response.xpath("//head/link").re('href="(.*?)"')[0] #解析爬取网页的 url,并不是直接使用函数获取,那样会夹杂乱码
pageHtml = response.xpath("//html").extract()[0] #获取网页html

# judge whether pageUrl in cUrl
if pageUrl in self.start_urls:
#若当前url 是 start_url 中以一员。进行该判断的原因是,我们对重复的 start_url 中的网址将仍然进行爬取,而对非 start_url 中的曾经爬过的网页将不再爬取
self.cDataBase.execute('SELECT * FROM urlLib WHERE url = (?)',(pageUrl,))
lines = self.cDataBase.fetchall()
if len(lines): #若当前Url已经爬过
pass #则不再在数据库中添加信息,只是由其为跟继续往下爬
else: #否则,将信息爬入数据库
self.cDataBase.execute('INSERT INTO urlLib (url) VALUES (?)',(pageUrl,))
self.cDataBase.execute("INSERT INTO infoLib (name,url,html) VALUES (?,?,?)",(pageName,pageUrl,pageHtml))
else: #此时进入的非 url 网页一定是没有爬取过的(因为深入start_url之后的网页都会先进行判断,在爬取,在下面的for循环中判断)
self.cDataBase.execute('INSERT INTO urlLib (url) VALUES (?)',(pageUrl,))
self.cDataBase.execute("INSERT INTO infoLib (name,url,html) VALUES (?,?,?)",(pageName,pageUrl,pageHtml))

self.connDataBase.commit() #保存数据库的更新

print "-----------------------------------------------" #输出提示信息,没啥用

for sel in response.xpath('//ul/li/a').re('href="(/question/.*?.html)'): #抓出所有该网页的延伸网页,进行判断并对未爬过的网页进行爬取
sel = "http://..com" + sel #解析出延伸网页的url
self.cDataBase.execute('SELECT * FROM urlLib WHERE url = (?)',(sel,)) #判断该网页是否已在数据库中
lines = self.cDataBase.fetchall()
if len(lines) == 0: #若不在,则对其继续进行爬取
yield Request(url = sel, callback=self.parse)

8. 如何入门 Python 爬虫

链接:https://pan..com/s/1wMgTx-M-Ea9y1IYn-UTZaA

提取码:2b6c

课程简介

毕业不知如何就业?工作效率低经常挨骂?很多次想学编程都没有学会?

Python 实战:四周实现爬虫系统,无需编程基础,二十八天掌握一项谋生技能。

带你学到如何从网上批量获得几十万数据,如何处理海量大数据,数据可视化及网站制作。

课程目录

开始之前,魔力手册 for 实战学员预习

第一周:学会爬取网页信息

第二周:学会爬取大规模数据

第三周:数据统计与分析

第四周:搭建 Django 数据可视化网站

......

9. Python编程基础之(五)Scrapy爬虫框架

经过前面四章的学习,我们已经可以使用Requests库、Beautiful Soup库和Re库,编写基本的Python爬虫程序了。那么这一章就来学习一个专业的网络爬虫框架--Scrapy。没错,是框架,而不是像前面介绍的函数功能库。

Scrapy是一个快速、功能强大的网络爬虫框架。

可能大家还不太了解什么是框架,爬虫框架其实是实现爬虫功能的一个软件结构和功能组件的集合。

简而言之, Scrapy就是一个爬虫程序的半成品,可以帮助用户实现专业的网络爬虫。

使用Scrapy框架,不需要你编写大量的代码,Scrapy已经把大部分工作都做好了,允许你调用几句代码便自动生成爬虫程序,可以节省大量的时间。

当然,框架所生成的代码基本是一致的,如果遇到一些特定的爬虫任务时,就不如自己使用Requests库搭建来的方便了。

PyCharm安装

测试安装:

出现框架版本说明安装成功。

掌握Scrapy爬虫框架的结构是使用好Scrapy的重中之重!

先上图:

整个结构可以简单地概括为: “5+2”结构和3条数据流

5个主要模块(及功能):

(1)控制所有模块之间的数据流。

(2)可以根据条件触发事件。

(1)根据请求下载网页。

(1)对所有爬取请求进行调度管理。

(1)解析DOWNLOADER返回的响应--response。

(2)产生爬取项--scraped item。

(3)产生额外的爬取请求--request。

(1)以流水线方式处理SPIDER产生的爬取项。

(2)由一组操作顺序组成,类似流水线,每个操作是一个ITEM PIPELINES类型。

(3)清理、检查和查重爬取项中的HTML数据并将数据存储到数据库中。

2个中间键:

(1)对Engine、Scheler、Downloader之间进行用户可配置的控制。

(2)修改、丢弃、新增请求或响应。

(1)对请求和爬取项进行再处理。

(2)修改、丢弃、新增请求或爬取项。

3条数据流:

(1):图中数字 1-2

1:Engine从Spider处获得爬取请求--request。

2:Engine将爬取请求转发给Scheler,用于调度。

(2):图中数字 3-4-5-6

3:Engine从Scheler处获得下一个要爬取的请求。

4:Engine将爬取请求通过中间件发送给Downloader。

5:爬取网页后,Downloader形成响应--response,通过中间件发送给Engine。

6:Engine将收到的响应通过中间件发送给Spider处理。

(3):图中数字 7-8-9

7:Spider处理响应后产生爬取项--scraped item。

8:Engine将爬取项发送给Item Pipelines。

9:Engine将爬取请求发送给Scheler。

任务处理流程:从Spider的初始爬取请求开始爬取,Engine控制各模块数据流,不间断从Scheler处获得爬取请求,直至请求为空,最后到Item Pipelines存储数据结束。

作为用户,只需配置好Scrapy框架的Spider和Item Pipelines,也就是数据流的入口与出口,便可完成一个爬虫程序的搭建。Scrapy提供了简单的爬虫命令语句,帮助用户一键配置剩余文件,那我们便来看看有哪些好用的命令吧。

Scrapy采用命令行创建和运行爬虫

PyCharm打开Terminal,启动Scrapy:

Scrapy基本命令行格式:

具体常用命令如下:

下面用一个例子来学习一下命令的使用:

1.建立一个Scrapy爬虫工程,在已启动的Scrapy中继续输入:

执行该命令,系统会在PyCharm的工程文件中自动创建一个工程,命名为pythonDemo。

2.产生一个Scrapy爬虫,以教育部网站为例http://www.moe.gov.cn:

命令生成了一个名为demo的spider,并在Spiders目录下生成文件demo.py。

命令仅用于生成demo.py文件,该文件也可以手动生成。

观察一下demo.py文件:

3.配置产生的spider爬虫,也就是demo.py文件:

4.运行爬虫,爬取网页:

如果爬取成功,会发现在pythonDemo下多了一个t20210816_551472.html的文件,我们所爬取的网页内容都已经写入该文件了。

以上就是Scrapy框架的简单使用了。

Request对象表示一个HTTP请求,由Spider生成,由Downloader执行。

Response对象表示一个HTTP响应,由Downloader生成,有Spider处理。

Item对象表示一个从HTML页面中提取的信息内容,由Spider生成,由Item Pipelines处理。Item类似于字典类型,可以按照字典类型来操作。

热点内容
算法的发展史 发布:2024-12-29 15:17:57 浏览:944
javastatic函数 发布:2024-12-29 15:13:27 浏览:318
办一个论坛需要租什么样的服务器 发布:2024-12-29 14:44:21 浏览:961
java开闭原则 发布:2024-12-29 14:43:36 浏览:919
多端数据统一存储 发布:2024-12-29 14:41:16 浏览:93
如何破解蓝奏云下载密码 发布:2024-12-29 14:40:08 浏览:742
9500h如何查安卓版本 发布:2024-12-29 14:39:15 浏览:805
如何不使用信用卡支付密码 发布:2024-12-29 14:30:36 浏览:200
安卓手机如何到数据到新手机 发布:2024-12-29 14:29:58 浏览:963
linux卸载虚拟机 发布:2024-12-29 14:29:48 浏览:41