pythonlogistic回归
㈠ 谁会多项式logistic回归分析
不知道你想基于什么软件进行 多项式logistic回归分析,这里提供两种:
1、python
使用statsmodels包中的MNLogit模块
2、Minitab
㈡ Python3.4机器学习的Logistic回归算法的stocGradAscent1(dataMatrix, classLabels, numIter=150)问题求解
把del那句改成del(list(dataIndex)[randIndex])
㈢ 在逻辑回归中,odds ratio怎么用python计算
实际上完成逻辑回归是相当简单的,首先指定要预测变量的列,接着指定模型用于做预测的列,剩下的就由算法包去完成了。
本例中要预测的是admin列,使用到gre、gpa和虚拟变量prestige_2、prestige_3、prestige_4。prestige_1作为基准,所以排除掉,以防止多元共线性(multicollinearity)和引入分类变量的所有虚拟变量值所导致的陷阱(mmy variable trap)。
程序缩进如图所示
㈣ 想学编程,python怎么样,猿来教育有这个课程吗
内容比较简单,课程也不错,对于编程小白很容易学,很适合“懒人”学习,就是那种自学容易三分钟热度,懒得到处找课程,下软件,花钱省事。一千块钱对于内容来说个人觉得不值,因为有一点点编程的基础,自学下来是没问题的。但风变编程的课程讲解做得不错,会用通俗易懂的方式给你讲,如果编程的东西对你很难理解,又想学,这也不失为一种方法。最后,Python的免费课程很容易找,软件也很容易下载,如果不想花钱可以自学,但没必要去摔别人的饭碗,一千块钱个人觉得贵,不值,但对有的人来说一千块钱就是零花钱,花钱省事也是他们的选择。和其他语言区别对于一个特定的问题,只要有一种最好的方法来解决这在由Tim Peters写的Python格言(称为The Zen of Python)里面表述为:There should be one-- and preferably only one --obvious way to do it。这正好和Perl语言(另一种功能类似的高级动态语言)的中心思想TMTOWTDI(There's More Than One Way To Do It)完全相反。Python的设计哲学是“优雅”、“明确”、“简单”。因此,Perl语言中“总是有多种方法来做同一件事”的理念在Python开发者中通常是难以忍受的。Python开发者的哲学是“用一种方法,最好是只有一种方法来做一件事”。在设计Python语言时,如果面临多种选择,Python开发者一般会拒绝花俏的语法,而选择明确的没有或者很少有歧义的语法。由于这种设计观念的差异,Python源代码通常被认为比Perl具备更好的可读性,并且能够支撑大规模的软件开发。这些准则被称为Python格言。在Python解释器内运行import this可以获得完整的列表。
㈤ python数据统计分析
1. 常用函数库
scipy包中的stats模块和statsmodels包是python常用的数据分析工具,scipy.stats以前有一个models子模块,后来被移除了。这个模块被重写并成为了现在独立的statsmodels包。
scipy的stats包含一些比较基本的工具,比如:t检验,正态性检验,卡方检验之类,statsmodels提供了更为系统的统计模型,包括线性模型,时序分析,还包含数据集,做图工具等等。
2. 小样本数据的正态性检验
(1) 用途
夏皮罗维尔克检验法 (Shapiro-Wilk) 用于检验参数提供的一组小样本数据线是否符合正态分布,统计量越大则表示数据越符合正态分布,但是在非正态分布的小样本数据中也经常会出现较大的W值。需要查表来估计其概率。由于原假设是其符合正态分布,所以当P值小于指定显着水平时表示其不符合正态分布。
正态性检验是数据分析的第一步,数据是否符合正态性决定了后续使用不同的分析和预测方法,当数据不符合正态性分布时,我们可以通过不同的转换方法把非正太态数据转换成正态分布后再使用相应的统计方法进行下一步操作。
(2) 示例
(3) 结果分析
返回结果 p-value=0.029035290703177452,比指定的显着水平(一般为5%)小,则拒绝假设:x不服从正态分布。
3. 检验样本是否服务某一分布
(1) 用途
科尔莫戈罗夫检验(Kolmogorov-Smirnov test),检验样本数据是否服从某一分布,仅适用于连续分布的检验。下例中用它检验正态分布。
(2) 示例
(3) 结果分析
生成300个服从N(0,1)标准正态分布的随机数,在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。最终返回的结果,p-value=0.9260909172362317,比指定的显着水平(一般为5%)大,则我们不能拒绝假设:x服从正态分布。这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。如果p-value小于我们指定的显着性水平,则我们可以肯定地拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。
4.方差齐性检验
(1) 用途
方差反映了一组数据与其平均值的偏离程度,方差齐性检验用以检验两组或多组数据与其平均值偏离程度是否存在差异,也是很多检验和算法的先决条件。
(2) 示例
(3) 结果分析
返回结果 p-value=0.19337536323599344, 比指定的显着水平(假设为5%)大,认为两组数据具有方差齐性。
5. 图形描述相关性
(1) 用途
最常用的两变量相关性分析,是用作图描述相关性,图的横轴是一个变量,纵轴是另一变量,画散点图,从图中可以直观地看到相关性的方向和强弱,线性正相关一般形成由左下到右上的图形;负面相关则是从左上到右下的图形,还有一些非线性相关也能从图中观察到。
(2) 示例
(3) 结果分析
从图中可以看到明显的正相关趋势。
6. 正态资料的相关分析
(1) 用途
皮尔森相关系数(Pearson correlation coefficient)是反应两变量之间线性相关程度的统计量,用它来分析正态分布的两个连续型变量之间的相关性。常用于分析自变量之间,以及自变量和因变量之间的相关性。
(2) 示例
(3) 结果分析
返回结果的第一个值为相关系数表示线性相关程度,其取值范围在[-1,1],绝对值越接近1,说明两个变量的相关性越强,绝对值越接近0说明两个变量的相关性越差。当两个变量完全不相关时相关系数为0。第二个值为p-value,统计学上,一般当p-value<0.05时,可以认为两变量存在相关性。
7. 非正态资料的相关分析
(1) 用途
斯皮尔曼等级相关系数(Spearman’s correlation coefficient for ranked data ),它主要用于评价顺序变量间的线性相关关系,在计算过程中,只考虑变量值的顺序(rank, 值或称等级),而不考虑变量值的大小。常用于计算类型变量的相关性。
(2) 示例
(3) 结果分析
返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关。第二个值为p-value,p-value越小,表示相关程度越显着。
8. 单样本T检验
(1) 用途
单样本T检验,用于检验数据是否来自一致均值的总体,T检验主要是以均值为核心的检验。注意以下几种T检验都是双侧T检验。
(2) 示例
(3) 结果分析
本例中生成了2列100行的数组,ttest_1samp的第二个参数是分别对两列估计的均值,p-value返回结果,第一列1.47820719e-06比指定的显着水平(一般为5%)小,认为差异显着,拒绝假设;第二列2.83088106e-01大于指定显着水平,不能拒绝假设:服从正态分布。
9. 两独立样本T检验
(1) 用途
由于比较两组数据是否来自于同一正态分布的总体。注意:如果要比较的两组数据不满足方差齐性, 需要在ttest_ind()函数中添加参数equal_var = False。
(2) 示例
(3) 结果分析
返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.19313343989106416,比指定的显着水平(一般为5%)大,不能拒绝假设,两组数据来自于同一总结,两组数据之间无差异。
10. 配对样本T检验
(1) 用途
配对样本T检验可视为单样本T检验的扩展,检验的对象由一群来自正态分布独立样本更改为二群配对样本观测值之差。它常用于比较同一受试对象处理的前后差异,或者按照某一条件进行两两配对分别给与不同处理的受试对象之间是否存在差异。
(2) 示例
(3) 结果分析
返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.80964043445811551,比指定的显着水平(一般为5%)大,不能拒绝假设。
11. 单因素方差分析
(1) 用途
方差分析(Analysis of Variance,简称ANOVA),又称F检验,用于两个及两个以上样本均数差别的显着性检验。方差分析主要是考虑各组之间的平均数差别。
单因素方差分析(One-wayAnova),是检验由单一因素影响的多组样本某因变量的均值是否有显着差异。
当因变量Y是数值型,自变量X是分类值,通常的做法是按X的类别把实例成分几组,分析Y值在X的不同分组中是否存在差异。
(2) 示例
(3) 结果分析
返回结果的第一个值为统计量,它由组间差异除以组间差异得到,上例中组间差异很大,第二个返回值p-value=6.2231520821576832e-19小于边界值(一般为0.05),拒绝原假设, 即认为以上三组数据存在统计学差异,并不能判断是哪两组之间存在差异 。只有两组数据时,效果同 stats.levene 一样。
12. 多因素方差分析
(1) 用途
当有两个或者两个以上自变量对因变量产生影响时,可以用多因素方差分析的方法来进行分析。它不仅要考虑每个因素的主效应,还要考虑因素之间的交互效应。
(2) 示例
(3) 结果分析
上述程序定义了公式,公式中,"~"用于隔离因变量和自变量,”+“用于分隔各个自变量, ":"表示两个自变量交互影响。从返回结果的P值可以看出,X1和X2的值组间差异不大,而组合后的T:G的组间有明显差异。
13. 卡方检验
(1) 用途
上面介绍的T检验是参数检验,卡方检验是一种非参数检验方法。相对来说,非参数检验对数据分布的要求比较宽松,并且也不要求太大数据量。卡方检验是一种对计数资料的假设检验方法,主要是比较理论频数和实际频数的吻合程度。常用于特征选择,比如,检验男人和女人在是否患有高血压上有无区别,如果有区别,则说明性别与是否患有高血压有关,在后续分析时就需要把性别这个分类变量放入模型训练。
基本数据有R行C列, 故通称RC列联表(contingency table), 简称RC表,它是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。
(2) 示例
(3) 结果分析
卡方检验函数的参数是列联表中的频数,返回结果第一个值为统计量值,第二个结果为p-value值,p-value=0.54543425102570975,比指定的显着水平(一般5%)大,不能拒绝原假设,即相关性不显着。第三个结果是自由度,第四个结果的数组是列联表的期望值分布。
14. 单变量统计分析
(1) 用途
单变量统计描述是数据分析中最简单的形式,其中被分析的数据只包含一个变量,不处理原因或关系。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况,并找出数据的分布模型。
单变量数据统计描述从集中趋势上看,指标有:均值,中位数,分位数,众数;从离散程度上看,指标有:极差、四分位数、方差、标准差、协方差、变异系数,从分布上看,有偏度,峰度等。需要考虑的还有极大值,极小值(数值型变量)和频数,构成比(分类或等级变量)。
此外,还可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图。
15. 多元线性回归
(1) 用途
多元线性回归模型(multivariable linear regression model ),因变量Y(计量资料)往往受到多个变量X的影响,多元线性回归模型用于计算各个自变量对因变量的影响程度,可以认为是对多维空间中的点做线性拟合。
(2) 示例
(3) 结果分析
直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显着性,P<0.05则认为自变量具有统计学意义,从上例中可以看到收入INCOME最有显着性。
16. 逻辑回归
(1) 用途
当因变量Y为2分类变量(或多分类变量时)可以用相应的logistic回归分析各个自变量对因变量的影响程度。
(2) 示例
(3) 结果分析
直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显着性,P<0.05则认为自变量具有统计学意义。
㈥ 线性模型-分类模型
线性模型也可用于分类问题。我们首先来看二分类。我们可以利用下面的公式预测:
y^=w[0]x[0]+w[1]x[1]+...+w[p]*x[p]+b>0
这个公式与线性回归的公式非常相似,但我们没有返回特征的加权求和,而是为预测设置了阈值(0)。如果函数值小于0,我们就预测类别-1,如果函数值大于0,我们就预测类别+1。对于所有用于分类的线性模型,这个预测规则都是通用的。同样,有很多不同的方法来找出系数(w)和截距(b)。
对于用于回归的线性模型,输出y^是特征的线性函数,是直线、平面或超平面(对于更高维的数据集)。对于用于分类的线性模型, 决策边界 是输入的线性函数。换句话说,(二元)线性分类器是利用直线、平面或超平面来分开两个类别的分类器。
学习线性模型有很多种算法。这些算法的区别在于以下两点:
1.系数和截距的特定组合对训练数据拟合好坏的度量方法;
2.是否使用正则化,以及使用哪种正则化方法。
不同的算法使用不同的方法来度量“对训练集拟合好坏”。由于数学上的技术原因,不可能调节w和b使得算法产生的误分类数量最少。对于我们的目的,以及对于许多有用而言,上面第一点(称为 损失函数 )的选择并不重要。
最常见的两种线性分类算法是 Logistic回归(logistic regression) 和 线性支持向量机(linear support vector machine,线性SVM) 。
Python version:3.7.1 (default, Dec 10 2018, 22:54:23) [MSC v.1915 64 bit (AMD64)]
pandas version:0.23.4
matplotlib version:3.0.2
Numpy version:1.15.4
Scipy version:1.1.0
IPython version:7.2.0
scikit-learn version:0.20.1
对于LogisticRegression和LinearSVC,决定正则化强度的权衡参数叫作C。C值越大,对应的正则化越弱。换句话说,如果参数C值较大,那么LogisticRegression和LinearSVC将尽可能将训练集拟合到最好,而如果C值较小,那么模型更强调使系数向量(w)接近于0。
参数C的作用还有另一个有趣之处。较小的C值可以让算法尽量适应“大多数”数据点,而较大的C值强调每个数据点都分类正确的重要性。
mglearn.plots.plot_linear_svc_regularization()
Training set score:0.953
Test set score:0.958
C=1的默认值给出了相当好的性能,在训练集和测试集上都达到95%的精度。但由于训练集和测试集的性能非常接近,所以模型很可能是欠拟合的。我们尝试增大C来拟合一个更灵活的模型:
Training set score:0.972
Test set score:0.965
使用C=100可以得到更高的训练集精度,也得到了稍高的测试集精度,这也证实了我们的直觉,即更复杂的模型应该性能更好。
Training set score:0.934
Test set score:0.930
最后,看一下正则化参数C取三个不同的值模型学到的系数:
LogisticRegression模型默认应用L2正则化。更强的正则化使的系数更趋向于0,但系数永远不会正好等于0。进一步观察图像,还可以第3个系数那里发现有趣之处,这个系数是“平均周长”(mean perimeter)。C=100和C=1时这个系数为正,其绝对值比C=1时还要大。在解释这样的模型时,系数可以告诉我们某个特征与哪个类别有关。例如,人们可能会认为高“纹理错误”(texture error)特征与“恶性”样本有关。但“平均周长”系数的正负号发生变化,说明较大的“平均周长”可以被当作“良性”的指标或“恶性”的指标,具体取决于我们考虑的是哪个模型。这也说明,对线性模型系数的解释应该始终持保留态度。
如果想要一个可解释性更强的模型,使用L1正则化可能更好,因为它约束模型只使用少数几个特征:
Training accuracy of l1 logreg with C=0.001:0.91
Test accuracy of l1 logreg with C=0.001:0.92
Training accuracy of l1 logreg with C=1.000:0.96
Test accuracy of l1 logreg with C=1.000:0.96
Training accuracy of l1 logreg with C=100.000:0.99
Test accuracy of l1 logreg with C=100.000:0.98
将二分类算法推广到多分类算法的一种常见方法是“一对多余”(one-vs.-rest)方法。在“一对多余”方法中,对每个类别都学习一个二分类模型,将这个类别与所有其他类别尽量分开,这样就生成了与类别格式一样多的二分类偶像。在测试点上运行所有二分类器来进行预测。在对应类别上分数最高的分类器“胜出”,将这个类别标签返回作为预测结果。
每个类别都对应一个二类分类器,这样每个类别都有一个系数(w)向量与一个截距(b)。
我们将“一对多余”方法应用在一个简单的三分类数据集上。我们用到了一个二维数据集,每个类别的数据都是从一个高斯分布中采样得出的:
在上面的数据集上训练一个LinearSVC分类器:
Coefficient shape: (3, 2)
Intercept shape: (3,)
我们看到,coef_的形状是(3,2),说明coef_每行包含三个类别之一的系数向量,每列包含某个特征(这个数据集有2个特征)对应的系数值。现在intercetp_是一维数组,保存每个类别的截距,我们将这3个二分类器给出的直线可视化:
你可以看到,训练集中所有属于类别0的点都在类别0对应的直线上方,这说明它们位于这个二分类器属于“类别0”的那一侧。属于类别0的点位于与类别2对应的直线上方,这说明它们被类别2的二分类器划为“其余”。属于类别0的点位于与类别1对应的直线左侧,这说明类别1的二元分类器将它们划为“其余”。因此,这一区域的所有点都会被最终分类器划为类别0(类别0的分类器的分类置信方程的结果大于0,其他两个类别对应的结果小于0)。
但图像中间的三角形区域属于哪一个类别呢,3个分类器都将这一区域内的点划为“其余”。这里的点应该应该划归到哪一个类别呢?答案是分类方程结果最大的那个类别,即最接近的那条线对应的类别。
线性模型的主要参数是正则化参数,在回归模型中叫作alpha,在LinearSVC和LogisticRegression中叫作C。alpha值较大或C值较小,说明模型比较简单。特别是对于回归模型而言,调节这些参数非常重要。通常在对数尺度上对C和alpha进行搜索。你还需要确定的是用L1正则化还是L2正则化。如果你假定只有几个特征是真正重要的,那么你应该用的是L1正则化,否则默认使用L2正则化。如果模型的可解释性很重要的话,使用L1也会有帮助。由于L1只用到几个特征,所以更容易解释哪些特征对模型时重要的,以及这些特征的作用。
线性模型的训练速度非常快,预测速度也很快。这种模型可以推广到非常大的数据集,对稀疏数据也很有效。如果你的数据包含数十万甚至上百万个样本,你可能需要研究使用LogisticRegression和Ridge模型的solver='sag'选项,在处理大型数据时,这一选项比默认值要更快。其他选项还有SGDClassifier类和SGDRegressor类,它们对线性模型实现了可扩展性更强的版本。
线性模型的另一个优点在于,利用我们之前见过的用于回归和分类的公式,理解如何进行预测是相对比较容易的。不幸的是,往往并不完全清楚系数为什么是这样的。如果你的数据集中包含高度相关的特征,这一问题尤为突出。在这种情况下,可能很难对系数做出解释。
如果特征数量大于样本数量,线性模型的表现通常都很好。它也常用于非常大的数据集,只是尤为训练其他模型并不可行。但在更低维的空间中,其他模型的泛化性能可能更好。
㈦ 人工智能学什么
作为一名计算机专业的教育工作者,我来回答一下这个问题。
首先,人工智能专业属于计算机大类专业之一,虽然是新兴专业,但是由于当前人工智能领域的发展前景比较广阔,同时一系列人工智能技术也进入到了落地应用的阶段,所以当前人工智能专业也是热点专业之一。
人工智能专业有三个特点,其一是多学科交叉,涉及到计算机、数学、控制学、经济学、神经学、语言学等诸多学科,因此整体的知识量还是比较大的,其二是学习难度较大,人工智能本身的知识体系尚处在完善当中,很多领域还有待突破,其三是实践场景要求高。
基于这三个特点,要想在本科阶段有较好的学习效果,要有针对性的解决方案。针对于多学科交叉的情况,在大一期间一定要多做加法,尤其要重视编程语言的学习,基于编程语言来打开计算机技术大门,进而学习机器学习,而机器学习则被称为是打开人工智能技术大门的钥匙。
其三是要重视为自己营造一个较好的交流和实践场景,这对于学习效果有较大的影响,建议在大一、大二期间积极参加人工智能相关的课题组。在选择课题组的时候,要考虑到自己的兴趣爱好、课题周期、实践资源等因素,从这个角度来看,学校的科研资源对于人工智能专业的同学有较大的影响。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以私信我!
很荣幸曾经参加过一次江苏省人工智能论坛,论坛上认真聆听了行业大佬周志华教授的报告,受益匪浅,首先呢,如果你是在校大学生,想要以后从事人工智能专业相关工作,我这里给你分享下 南京大学人工智能学院院长周志华教授 曾经在论坛上分享的南京大学人工智能专业本科生教育培养大纲的相关课程。
首先是基础数学部分:
数学分析、高等数学、高等代数、概率论与数理统计、最优化方法、数理逻辑。
其次是学科基础课程:
人工智能导引、数据结构与算法分析、程序设计基础、人工智能程序设计、机器学习导论、知识表示与处理、模式识别与计算机视觉、自然语言处理、数字系统设计基础、操作系统。
专业方向课程:
泛函分析、数字信号处理、高级机器学习、计算方法、控制理论方法、机器人学导论、多智能体系统、分布式与并行计算。
专业选修课课程:
数学建模、矩阵计算、随机过程、组合数学。博弈论及其应用、时间序列分析、编译原理、随机算法、数据库概论。
这是南京大学人工智能学院本科生四年的课程安排,看起来课程非常多,但这是一个培养体系,现在国内只有南京大学针对人工智能专业开设了如此系统的培养方案,专业涉及人工智能的各个领域方向。学生可以根据自己的兴趣爱好,选择想要学习的领域方向。
如果你已经毕业,想要转行从事人工智能行业,那么下面这套课程可能比较适合你:
1.莫烦python教程(网络可搜): 莫烦python有很多专栏,可以学习到python基础、以及人工智能相关的软件框架教程,包括相关人工智能相关的一些实战小项目。
2.吴恩达机器学习(网易云课堂): 人工智能机器学习理论部分,非常适合零基础的小白学习
3.吴恩达卷积神经网络(网易云课堂): 人工智能深度学习理论部分,非常适合零基础的小白学习
4.李飞飞CS231n(网易云课堂): 人工智能深度学习和机器学习理论,适合有一定基础的学习者。
5.吴恩达cs229(blibli): 人工智能深度学习和机器学习理论,适合有一定基础的学习者。
这些基础课程学会了,可能就算是跨入了半个门槛,当然面试的时候还欠缺实战经验,于是你可以去kaggle或者天池参加一些比赛,有了这些比赛经验,简历上也算是多了一块实战经验,增加了你的面试成功率。最后,不要参加什么培训机构区培训,既花钱又学不到什么东西,最后毕业还会给你简历造假,得不偿失,我给你推荐的这些课程绝对比市面上99.99%的培训机构课程靠谱!
接下来文章会侧重在以下几方面
1、零基础如何进行人工智能的自学(以找工作为目的),包括路径规划,怎么学等等。
2、我的个人感悟,关于转行、工作、创业、希望能给大家一些启发。
3、好的学习资源分享
先说一下个人背景,一本,经济学毕业,上学时从未学过编程。我这里指的零基础指的是,没有编程基础、没有数学基础(数学需要一些基本的,如果没有,后续也会帮助大家的)。
刚毕业第一年时,迷茫,不知道做什么。
第一阶段:边工作边自学爬虫,失败
毕业一年后,觉得编程可能是自己想要的,所以开始自学编程。
最开始学的是爬虫,python语言。每天学6个小时,一周五到六天。学了4个月后,去面了五六家企业,没有成功。原因是爬虫的知识够,可是计算机的基础太薄弱。什么算法、计算机网络这些,统统没学。因为我当时是完全自学,没有人带,导致我也不知道要学这些。第一阶段,失败,说实话,有点气馁,那可是每天没日没夜的学习啊,最后却换来一场空。可是生活还得继续,怨天尤人有什么用。
第二阶段:边工作边自学人工智能,成功
面试失败后,考虑了要把编程基础学一下再去面试,还是学点别的。我的决定是学人工智能,当时对这个比较感兴趣。好了,又是学了半年多,每天学6个小时,一周6天。从机器学习学到深度学习再学回机器学习。面试,成功地去公司从事机器学习深度学习方面的基础工作。不过实力肯定没有那些编程出身,数学、统计出身的人强,所以很多时候也是边学边做,打打杂。
其实我说的很简单很轻松的样子,但其中的艰辛只有自己是最清楚。所以我很希望通过我未来经验学习的分享,帮助大家少走一些弯路。
第三阶段:自己干
现在,已从公司辞职,自己开发网站,做社群,开网店。就是觉得,其实编程也只是我的一个工具,这个人就是比较喜欢自己做点事情,编程挺累的,哈哈哈。如果大家有什么合作的好点子,也欢迎随时来找我哦。
十问十答:
1、零基础转行学编程可以吗?可以,要做好吃苦的准备。学习是个漫长的过程,你上班的话,能否保证一定时间的学习呢,这个是你要问自己的。我也是边工作边学习,不同的是,我工作很清闲,所以我基本可以在上班时间学习。如果你还在上学,恭喜你这是你最好的机会了。
2、该自学还是去培训班?我觉得自学就够了,培训班真是又贵又水。这是我进过培训班的朋友告诉我的。其实你工作之后会发现,很多东西都是要自学的。如果你连自学都没办法自学的话,你又怎么能工作。而且,自学的效率会更高,当然前提是路径不能错。
3、转行编程,就业率怎么样?说实话,如果你不是编程出身的,要转行编程其实是比较难的,毕竟人家4年的正统学习不是白学的。但这不意味着就没办法。找准目标,规划好路径,学习最必要的知识,这样就有机会。但是,请做好学完仍找不到工作的心理准备。
4、最理想的自学环境是怎么样的?清晰的学习路径+自学+交流讨论的环境+有人指导
5、人工智能零基础可以学吗?可以,但是比一般转行编程的要难,因为要自学的东西更多,要求的门槛也会更高。这个后续会着重讲到。
6、学人工智能需要数学吗?不要因为数学而望而切步,数学是需要的,但没有要求的高不可攀,通过必要的学习,是可以达到入门水准的。
7、以前没接触过编程,怎么办?可以学习python,这真的是一门对零基础的人来说很友好的语言了,其他的我不懂。
8、一般转行编程的周期要多久?按我跟我周边朋友的经验来看。一周5-6天,一天6小时学习时间,4-7个月,这应该是比较正常的。
9、我是怎么坚持下来的?期间有很多次想要放弃,有的时候是真的看不懂,也没人教,纯自学,安装个工具有什么时候就要安装半天,不多说,都是泪啊。你的欲望有多强烈,就能有多坚持。
10、现在学编程还来得及吗?永远都来得及,学编程不一定是为了好工作,它更是一个全新的世界,你会发现很多对自己有帮助的东西。就算以后你不做这个,我相信这个学习的过程也会有所收获。
这是我之后会写的文章的大概目录,大家可以参考一下。
以下系列是暂定的,一篇文章可能会写成好几篇。这个系列不仅仅以学习为目的,目的是为了达到机器学习的工作入门标准。并不简单,但努力就有可能。网上的教程我看了很多,路径大部分都没有错。只是我觉得第一,太贵,明明网上有很多免费的更好的资源。第二,练习的量远远不够达到能去找工作的标准。
目录:
零基础自学人工智能系列(1):机器学习的最佳学习路径规划(亲身经验)
零基础自学人工智能系列(2):机器学习的知识准备(数学与python,附学习资源)
零基础自学人工智能系列(3):机器学习的知识准备(数学篇详解)
零基础自学人工智能系列(4):机器学习的知识准备(python篇详解)
零基础自学人工智能系列(5):机器学习的理论学习规划(附资源)
零基础自学人工智能系列(6):深度学习的理论学习规划(附资源)
零基础自学人工智能系列(7):机器学习的实战操作(附资源和代码)
零基础自学人工智能系列(8):深度学习的实战操作(附资源和代码)
零基础自学人工智能系列(9):找工作篇,需加强的部分(类似数据结构与算法)
最后,我希望我能给大家树立一些信心。不管你现在处于什么水平,只要肯努力,什么都有可能的。
首先我们需要一定的数学基础,如:高数、线性代数、概率论、统计学等等。很多人可能要问,我学习人工智能为什么要有数学基础呢?二者看似毫不相干,实则不然。线性代数能让我们了解如何将研究对象形象化,概率论能让我们懂得如何描述统计规律,此外还有许多其他数学科目,这些数学基础能让我们在学习人工智能的时候事半功倍。
1、学习并掌握一些数学知识
高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础
线性代数很重要,一般来说线性模型是你最先要考虑的模型,加上很可能要处理多维数据,你需要用线性代数来简洁清晰的描述问题,为分析求解奠定基础
概率论、数理统计、随机过程更是少不了,涉及数据的问题,不确定性几乎是不可避免的,引入随机变量顺理成章,相关理论、方法、模型非常丰富。很多机器学习的算法都是建立在概率论和统计学的基础上的,比如贝叶斯分类器、高斯隐马尔可夫链。
再就是优化理论与算法,除非你的问题是像二元一次方程求根那样有现成的公式,否则你将不得不面对各种看起来无解但是要解的问题,优化将是你的GPS为你指路
有以上这些知识打底,就可以开拔了,针对具体应用再补充相关的知识与理论,比如说一些我觉得有帮助的是数值计算、图论、拓扑,更理论一点的还有实/复分析、测度论,偏工程类一点的还有信号处理、数据结构。
2、掌握经典机器学习理论和算法
如果有时间可以为自己建立一个机器学习的知识图谱,并争取掌握每一个经典的机器学习理论和算法,我简单地总结如下:
1) 回归算法:常见的回归算法包括最小二乘法(OrdinaryLeast Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(MultivariateAdaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing);
2) 基于实例的算法:常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM);
3) 基于正则化方法:常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net);
4) 决策树学习:常见的算法包括:分类及回归树(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM);
5) 基于贝叶斯方法:常见算法包括:朴素贝叶斯算法,平均单依赖估计(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);
6) 基于核的算法:常见的算法包括支持向量机(SupportVector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等;
7) 聚类算法:常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM);
8) 基于关联规则学习:常见算法包括 Apriori算法和Eclat算法等;
9) 人工神经网络:重要的人工神经网络算法包括:感知器神经网络(PerceptronNeural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-OrganizingMap, SOM)。学习矢量量化(Learning Vector Quantization, LVQ);
10) 深度学习:常见的深度学习算法包括:受限波尔兹曼机(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders);
11) 降低维度的算法:常见的算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS), 投影追踪(ProjectionPursuit)等;
12) 集成算法:常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(GradientBoosting Machine, GBM),随机森林(Random Forest)。
3、掌握一种编程工具,比如Python
一方面Python是脚本语言,简便,拿个记事本就能写,写完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab虽然包也多,但是效率是这四个里面最低的。
4、了解行业最新动态和研究成果,比如各大牛的经典论文、博客、读书笔记、微博微信等媒体资讯。
5、买一个GPU,找一个开源框架,自己多动手训练深度神经网络,多动手写写代码,多做一些与人工智能相关的项目。
6、选择自己感兴趣或者工作相关的一个领域深入下去
人工智能有很多方向,比如NLP、语音识别、计算机视觉等等,生命有限,必须得选一个方向深入的专研下去,这样才能成为人工智能领域的大牛,有所成就。
再回答第二个问题,人工智能到底是不是一项技术?
根据网络给的定义,人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的还能的理论、方法、技术及应用系统的一门新的技术科学。
网络关于人工智能的定义详解中说道:人工智能是计算机的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
综上,从定义上讲,人工智能是一项技术。
希望能帮到你。
人工智能需要学习的主要内容包括:数学基础课学科基础课,包括程序设计基础、数据结构、人工智能导论、计算机原理、 数字电路 、系统控制等;专业选修课,比如 神经网络 、深度学习以及认知科学、神经科学、计算金融、计算生物学、计算语言学等交叉课程。
一、人工智能专业学什么
1.认知与神经科学课程群
具体课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程
2.人工智能伦理课程群
具体课程:《人工智能、 社会 与人文》、《人工智能哲学基础与伦理》
3.科学和工程课程群
新一代人工智能的发展需要脑科学、神经科学、认知心理学、信息科学等相关学科的实验科学家和理论科学家的共同努力,寻找人工智能的突破点,同时必须要以严谨的态度进行科学研究,让人工智能学科走在正确、 健康 的发展道路上。
4.先进机器人学课程群
具体课程:《先进机器人控制》、《认知机器人》、,《机器人规划与学习》、《仿生机器人》
5.人工智能平台与工具课程群
具体课程:《群体智能与自主系统》《无人驾驶技术与系统实现》《 游戏 设计与开发》《计算机图形学》《虚拟现实与增强现实》。
6.人工智能核心课程群
具体课程:《人工智能的现代方法I》《问题表达与求解》、《人工智能的现代方法II》《机器学习、自然语言处理、计算机视觉等》。
二、人工智能专业培养目标及要求
以培养掌握人工智能理论与工程技术的专门人才为目标,学习机器学习的理论和方法、深度学习框架、工具与实践平台、自然语言处理技术、语音处理与识别技术、视觉智能处理技术、国际人工智能专业领域最前沿的理论方法,培养人工智能专业技能和素养,构建解决科研和实际工程问题的专业思维、专业方法和专业嗅觉。
探索 实践适合中国高等人工智能人才培养的教学内容和教学方法,培养中国人工智能产业的应用型人才。
三、人工智能专业简介
人工智能专业是中国高校人计划设立的专业,旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。2018年4月,教育部在研究制定《高等学校引领人工智能创新行动计划》,并研究设立人工智能专业,进一步完善中国高校人工智能学科体系。2019年3月,教育部印发了《教育部关于公布2018年度普通高等学校本科专业备案和审批结果的通知》,根据通知,全国共有35所高校获首批“人工智能”新专业建设资格。
2020年3月3日,教育部公布2019年度普通高等学校本科专业备案和审批结果,“人工智能”专业成为热门。
人工智能是一个综合学科,其本身涉及很多方面,比如神经网络、机器识别、机器视觉、机器人等,因此,我们想要学好整个人工智能是很不容易的。
首先我们需要一定的数学基础,如:高数、线性代数、概率论、统计学等等。很多人可能要问,我学习人工智能为什么要有数学基础呢?二者看似毫不相干,实则不然。线性代数能让我们了解如何将研究对象形象化,概率论能让我们懂得如何描述统计规律,此外还有许多其他数学科目,这些数学基础能让我们在学习人工智能的时候事半功倍。
然后我们需要的就是对算法的累积,比如人工神经网络、遗传算法等。人工智能的本身还是通过算法对生活中的事物进行计算模拟,最后做出相应操作的一种智能化工具,算法在其中扮演的角色非常重要,可以说是不可或缺的一部分。
最后需要掌握和学习的就是编程语言,毕竟算法的实现还是需要编程的,推荐学习的有Java以及Python。如果以后想往大数据方向发展,就学习Java,而Python可以说是学习人工智能所必须要掌握的一门编程语言。当然,只掌握一门编程语言是不够的,因为大多数机器人的仿真都是采用的混合编程模式,即采用多种编程软件及语言组合使用,在人工智能方面一般使用的较多的有汇编和C++,此外还有MATLAB、VC++等,总之一句话,编程是必不可少的一项技能,需要我们花费大量时间和精力去掌握。
人工智能现在发展得越来越快速,这得益于计算机科学的飞速发展。可以预料到,在未来,我们的生活中将随处可见人工智能的产品,而这些产品能为我们的生活带来很大的便利,而人工智能行业的未来发展前景也是十分光明的。所以,选择人工智能行业不会错,但正如文章开头所说,想入行,需要我们下足功夫,全面掌握这个行业所需要的技能才行。
,首先呢,如果你是在校大学生,想要以后从事人工智能专业相关工作,我这里给你分享下 南京大学人工智能学院院长周志华教授 曾经在论坛上分享的南京大学人工智能专业本科生教育培养大纲的相关课程。
首先是基础数学部分:
人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。
㈧ Logistic函数(sigmoid函数)
Logistic函数的表示形式如下:
它的函数图像如下,由于函数图像很像一个“S”型,所以该函数又叫 sigmoid 函数。
满足的性质:
1.对称性,关于(0,0.5)中心对称
2.逻辑斯谛方程即微分方程
最早logistic函数是皮埃尔·弗朗索瓦·韦吕勒在1844或1845年在研究它与人口增长的关系时命名的。广义Logistic曲线可以模仿一些情况人口增长( P )的 S 形曲线。起初阶段大致是 指数增长 ;然后随着开始变得饱和,增加变慢;最后,达到成熟时增加停止。
当一个物种迁入到一个新生态系统中后,其数量会发生变化。假设该物种的起始数量小于环境的最大容纳量,则数量会增长。该物种在此生态系统中有天敌、食物、空间等资源也不足(非理想环境),则增长函数满足逻辑斯谛方程,图像呈S形,此方程是描述在资源有限的条件下种群增长规律的一个最佳数学模型。在以下内容中将具体介绍逻辑斯谛方程的原理、生态学意义及其应用。
Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。之前在经典之作《数学之美》中也看到了它用于广告预测,也就是根据某广告被用户点击的可能性,把最可能被用户点击的广告摆在用户能看到的地方,然后叫他“你点我啊!”用户点了,你就有钱收了。这就是为什么我们的电脑现在广告泛滥的原因了。
还有类似的某用户购买某商品的可能性,某病人患有某种疾病的可能性啊等等。这个世界是随机的(当然了,人为的确定性系统除外,但也有可能有噪声或产生错误的结果,只是这个错误发生的可能性太小了,小到千万年不遇,小到忽略不计而已),所以万物的发生都可以用可能性或者几率(Odds)来表达。“几率”指的是某事物发生的可能性与不发生的可能性的比值。
Logistic regression可以用来回归,也可以用来分类,主要是二分类。它不像SVM直接给出一个分类的结果,Logistic Regression给出的是这个样本属于正类或者负类的可能性是多少,当然在多分类的系统中给出的是属于不同类别的可能性,进而通过可能性来分类。
假设我们的样本是{ x , y},y是0或者1,表示正类或者负类, x 是我们的m维的样本特征向量。那么这个样本 x 属于正类,也就是y=1的“概率”可以通过下面的逻辑函数来表示:
这里的 θ 是模型参数,也就是回归系数,σ是sigmoid函数。这样y=0的“概率”就是:
考查逻辑斯蒂回归模型的特点,一个事件的几率(oods)是指这件事发生的概率与不发生概率的比值,如果事件发生的概率是p,那么该事件的几率是p/(1-p),该事件的对数几率(log odds)或者logit函数是
对于逻辑斯蒂回归而言,可以得到如下的对数几率
这就是说,在逻辑斯蒂回归模型中,输出y=1的对数几率是输入x的线性函数,或者说,输出y=1的对数几率是由输入x的线性函数表示的模型,即逻辑斯蒂回归模型。换句话说,y就是我们的关系变量,例如她喜不喜欢你,与多个因素有关,比如你的人品,你的长相,你是否有钱等。我们把这些因素表示成变量x 1 , x 2 ,…, x m ,那么这个女生是怎么考虑这些因素的呢,每个人心理其实都有一杆秤,例如有人比较看重你的人品,人品的权重是0.8,;也有人比较看重你有钱,有钱的权重设置成0.7等等。我们把这些对应于x 1 , x 2 ,…, x m 的权值叫做回归系数,表达为θ 1 , θ 2 ,…, θ m 。他们的加权和就是你在心目中的得分。
在参数学习时,可以用极大似然估计方法求解。假设我们有n个独立的训练样本{( x 1 , y 1 ) ,( x 2 , y 2 ),…, ( x n , y n )},y={0, 1}。那每一个观察到的样本( x i , y i )出现的概率是
对于整个样本集,每个样本的出现都是独立的,n个样本出现的似然函数为(n个样本的出现概率是他们各自的概率乘积)
那么上述的似然函数就是模型的代价函数(cost function),我们要求的参数就是θ*。我们稍微对上式进行转换
对L(θ)的极大值,得到θ的估计值。问题变成了以对数似然函数为木匾函数的最优化问题。用L(θ)对θ求导,得到
无法解析求解的,所以一般使用迭代的方法求解,通常采用梯度下降法和拟牛顿法。
上面介绍的是儿分类的模型,用于二类分类。可以将其推广为多项逻辑斯蒂回归模型(multi-nominal regression model),用于多分类,假设离散随机变量Y的取值是{1,2,3,...,K}那么多项逻辑斯蒂回归的模型是
同理,二项逻辑斯蒂回归的参数估计的方法也可以推广到多项逻辑斯蒂回归。
[1]. 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)
[2].《统计学习方法》 李航 着
㈨ 0基础学习python怎么入门呢
链接:http://pan..com/s/1VFYbfZcE5a808W7ph9-qDQ
零基础学python课程。Python是目前最流行的动态脚本语言之一。本课程由浅入深,全面、系统地介绍了使用Python进行开发的各种知识和技巧。 包括Python环境的安装和配置、Python的基本语法、模块和函数、内置数据结构、字符串和文件的处理、正则表达式的使用、异常的捕获和处理、面向对象的语言特性和设计、Python的数据库编程、Tkinter GUI库的使用、HTML应用、XML应用、Django网页开发框架的使用、测试驱动开发模式应用、Python中的进程和线程、Python系统管理、网络编程、Python图像处理、Python语言的扩展和嵌入以及Windows下Python开发等。
课程目录:
python语言的特点
python的发展历史与版本
python的安装
python程序的书写规则
基础数据类型
变量的定义和常用操作
序列的概念
字符串的定义和使用
......