当前位置:首页 » 编程语言 » python操作文件

python操作文件

发布时间: 2022-10-22 00:15:00

python对文本文件的读有哪些方法,写有哪些方法

1 文件读取全文本操作
在一定场景下我们需要把文本全部内容读取出来,进行处理。python提供三种函数读取文件,分别是read readline readlines,
read():读取文件的全部内容,加上参数可以指定读取的字符。
readline():读取文件的一行。
readlines():读取文件的所有行到内存中。
不同场景下我们可以选择不同函数对文件进行读取。
1.1 方法一
file_name = input("请输入你要打开的文件的完整路径及名称")
file= open(file_name, "r")
txt=file.read()
# 全文本的处理
file.close()
使用read函数将文件中的内容全部读取,放在字符串变量txt中。这样操作适合于文本较小,处理简单的情况,当文件较大时,这种方式处理时不合适的。一次性读取较大的文件到内存中,会耗费较多的时间和资源。这时候分批处理效果更好。
1.2 方法二
file_name = input("请输入你要打开的文件的完整路径及名称")
file= open(file_name, "r")
txt= file.read(4)
# 文本的处理while txt != ""txt= file.read(4)
# 批量文本处理
file.close()
这种方法适合于分批处理文本信息,每次批量读入,批量处理,不会对内存造成较大的压力。
1.3 方法三
file_name = input("请输入你要打开的文件的完整路径及名称")
file= open(file_name, "r")for line infile.readlines():
# 处理每一行数据
file.close()
这种处理方式适合处理以行为分割特点的文本,并且文本较小,因为这种处理方式需要一次性把文件所有内容读取到内存中。
1.4 方法四
file_name = input("请输入你要打开的文件的完整路径及名称")
file= open(file_name, "r") # 这里的file时文件句柄for line infile:
# 处理每一行数据
file.close()
这种方式和方法三中的区别是分行读入,逐行处理,不会一次性把文件所有内容都读入到内存中,对一些大文件的处理是很有效的。
2 文件写入文本操作
文件写入有两种写入函数和一种辅助支持。
write():向文件中写入一个字符或者字节流
writelines():将一个元素全为字符串的列表写入到文件中 需要注意的是,writelines写入列表元素的时候会把列表元素的内容拼接到一起写入,不会有换行和空格 。
seek(): 辅助写入函数offset偏移量参数代表含义如下
0 - 文件开头
1 - 当前位置
2 - 文件结尾
2.1 方法一
file_name = input("output.txt", "w+")
text= "hello world!"file_name.write(text)
file.close()
2.2 方法二
file_name = input("output.txt", "w+")
list= ["中午","早上","晚上"]
file_name.writelines(list)for line infile:
# 读取写入的数据,这时候发现是没有任何内容的
file.close()
我们增加一行代码就可以读取到写入的文件内容,利用seek()函数调整写操作指针的位置,可以实现写操作之后的正常读取。
file_name = input("output.txt", "w+")
list= ["中午","早上","晚上"]
file_name.readlines(list)
file_name.seek(0) # 调整写的指针到文件的开始位置for line infile:
# 读取写入的数据,这时候会读出一行写入的数据。
file.close()

❷ Python其实很简单 第十五章 文件操作

在各种变量中保存的数据都是临时的,随着程序运行结束都会丢失。要做到数据长期有效,必须建立在磁盘中建立文件,将数据输入到文件中并保存。需要获取数据时需要打开文件读取。

而我们自己建立的程序都是应用程序,从本质上讲,应用程序是无法直接操作计算机的硬件的,譬如读写磁盘中文件,这就需要调用操作系统中的相应命令。接下来我们使用的Python内置函数open()、write()都是通过调用操作系统的相关命令才实现文件读写的,至于其中的细节,我们就不需要考虑了。

15.1创建和打开文件

在Python 中创建或打开文件,实际上是建立一个对象,该对象通过调用内置的open()函数创建或打开一个文件。

语法:

file object = open(filename [, mode][, buffering])

参数说明如下:

filename:file_name变量是一个包含了你要访问的文件名称的字符串值;

mode:mode决定了打开文件的模式:只读,写入,追加等。所有可取值见如下的完全列表。这个参数是非强制的,默认文件访问模式为只读(r)。

Buffering:如果buffering的值被设为0,就不会有寄存;如果buffering的值取1,访问文件时会寄存行;如果将buffering的值设为大于1的整数,表明了这就是的寄存区的缓冲大小;如果取负值,寄存区的缓冲大小则为系统默认。

mode参数的参数值及说明

对于其中最难区别的r、r+、w、w+、a、a+几个参数的区别总结如下,要特别注意指针的位置:

下面举例说明open( )函数的使用方法。

例1:

>>> file=open(Ƈ.py')

如果文件“1.py”存在,则可以打开此文件;如果文件“1.py”不存在,则会出现如下提示:

Traceback (most recent call last):

File " ", line 1, in

file=open(Ƈ.py')

FileNotFoundError: [Errno 2] No such file or directory: Ƈ.py'

例2:

>>> file=open(Ɗ.py',’a+’)

虽然文件“4.py”不存在,但运行并未出现错误,参见上表,“a+”的含义是以读写模式打开文件,如果该文件已经存在,新内容将以追加方式写入;如果该文件不存在,则新建文件用于写入。查看文件夹,发现已经生成了一个新的文件4.py。

例3:

file=open('python.png','rb')

print(file)

运行结果:

这就是说,虽然Python可以打开一个图片格式的文件,但print()并不能将其输出,还需要第三方库中模块的相应方法去处理,如PIL中的open()f方法。

例4:

file = open("f.txt", "w",encoding='utf-8')

# 以只写模式打开文件f.txt,编码方式为utf-8

print( "文件名: ", file.name) # 输出文件名

print( "是否已关闭 : ", file.closed) # 文件是否打开

print( "访问模式 : ", file.mode) # 文件访问模式

运行结果:

文件名: f.txt

是否已关闭 : False

访问模式 : w

例5:


15.2关闭文件

打开文件使用后要及时关闭,以免造成不必要的破坏,同时也可以释放内存。在Python中使用close()方法可以关闭文件。

语法格式:

file.close()

其中,file为文件对象。


15.3 with语句

with 语句适用于对资源进行访问的场合,确保不管使用过程中是否发生异常都会执行必要的“清理”操作,释放资源,比如文件使用后自动关闭、线程中锁的自动获取和释放等。

with语句的语法格式如下:

with expression as target:

with-body

其中,expression用于指定一个表达式,譬如打开文件的open()函数。target用于指定一个变量,并且将expression的结果保存到该变量中,譬如文件对象file。with-body用于指定with语句体,譬如一些文件操作的相关语句,如果没有要执行的语句体,则直接用pass语句代替。

假设python当前目录下存在一个test.txt文件,其内容如下:

Python是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。

Python是交互式语言: 这意味着,您可以在一个 Python 提示符 >>> 后直接执行代码。

Python是面向对象语言: 这意味着Python支持面向对象的风格或代码封装在对象的编程技术。

Python是初学者的语言:Python 对初级程序员而言,是一种伟大的语言,它支持广泛的应用程序开发。

举例如下:

with open('test.txt','r',encoding='utf-8') as file:

line=file.readline() # readline()方法可以读取文件一行数据,接下来就会讲到。

print(line)

运行结果如下:

Python是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。

而此时,我们给该段代码with语句之外再增加一个读取文件的语句,代码如下:

with open('test.txt','r',encoding='utf-8') as file:

line=file.readline()

print(line)


line2=file.readline()

print(line2)

发现出现了如下错误提示:

Traceback (most recent call last):

File "C:/Users/zym/AppData/Local/Programs/Python/Python39/3.py", line 5, in

line2=file.readline()

ValueError: I/O operation on closed file.

意思是要读取的文件已经被关闭了。

由此可知,当with语句运行结束后,被打开的test.txt文件就自动关闭了。

15.4读取文件

在Python 中读取文件的方法有:

1、读取指定个数的字符

格式如下:

File.read([size])

其中,file为打开的文件对象。size为可选参数,可以指定要读取的字符个数,省缺表示读取所有内容。

在调用read()方法读取文件内容时,文件必须是以r(只读)或者r+(读写)方式打开。

如:

with open('test.txt','r',encoding='utf-8') as file:

txt=file.read() (或txt=file.read(10))

print(txt)

将读取、输出test.txt文件的全部内容(或前10个字符)。

2、移动文件的指针

对于刚打开的文件,文件指针总是指向文件头的。也可以通过seek()方法将文件的指针移动到新的位置。

格式如下:

file.seek(offset[,whence])

其中,file表示已经打开的文件对象;offset用于指定移动的字符个数;whence表示从哪个位置起始计算个数,其值为0表示从文件头开始计算,其值为1表示从当前位置开始计算,其值为2表示从文件尾开始计算,默认值为0。

例如:

with open('test.txt','r',encoding='utf-8') as file:

string=file.read(9)

print('取9个字符: '+string)

file.seek(2) #指针从文件头开始移动2个字符

string=file.read(9) #从当前位置读取10个字符

输出结果:

取9个字符:

Python是一种

取9个字符:

thon是一种解释


而下面的代码会抛出错误:

with open('test.txt','r',encoding='utf-8') as file:

file.seek(2,1) #指针从当前位置开始移动2个字符

string=file.read(10) #从当前位置读取10个字符

print('取10个字符: '+string)

错误提示为:

Traceback (most recent call last):

File "C:.py", line 7, in

file.seek(2,1) #指针从当前位置开始移动2个字符

io.UnsupportedOperation: can't do nonzero cur-relative seeks

原因在于,必须使用b模式(即rb)打开文件,才能使用whence参数。但是,b模式(二进制)不适合文本文件。对于test.txt这样的文本文件,为了解决通过改变指针读取任意位置字符,可以采用加一个位置变量的方法来存储指针的值。

例如:

with open('test.txt','r',encoding='utf-8') as file:

#utf-8汉字与英文字符都占一个字符

string='' #设置一个空字符串

pointer=0 #当前指针为0

str1=file.read(6) #读取6个字符

pointer+=6 #指针变量后移6个字符

string+=str1 #string用来存放已读取的字符

print('取6个字符: ',str1)

file.seek(pointer) #指针从文件头开始移动2个字符

str1=file.read(8) #从当前位置读取10个字符

pointer+=8 #指针跳过已读取的字符

string+=str1

print('再取8个字符: ',str1)

print('所有读取的字符: ',string)

print('当前指针所处的位置: ',pointer)

str1=file.read(1)

print('当前指针所处的字符: ',str1)


运行结果如下:

取6个字符:

Python

再取8个字符:

是一种解释型语言

所有读取的字符:

Python是一种解释型语言

当前指针所处的位置:

14

当前指针所处的字符:


3、读取一行数据readline()方法

语法格式:

file.readline()

例:

with open('test.txt','r',encoding='utf-8') as f:

string=f.read(1) # 读取文件的第一个字符

if string != '': # 防止文件为空文件

lineno=0

while True:

line=f.readline()

if line != '':

lineno+=1

print('第'+str(lineno)+'行:'+line,end='')

# 因为每行都有自带的分行符,print()语句不允许换行

else:

break # 出现空行时停止读取

else:

print('要读取的文件为空文件!')

运行结果:

第1行:ython是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。

第2行:Python是交互式语言: 这意味着,您可以在一个 Python 提示符 >>> 后直接执行代码。

第3行:Python是面向对象语言: 这意味着Python支持面向对象的风格或代码封装在对象的编程技术。

第4行:Python是初学者的语言:Python 对初级程序员而言,是一种伟大的语言,它支持广泛的应用程序开发。

4、读取全部行命令readlines()方法

语法格式:

File.readlines()

该方法与read()方法一样,在调用read()方法读取文件内容时,文件必须是以r(只读)或者r+(读写)方式打开。

例:

with open('test.txt','r',encoding='utf-8') as f:

txt=f.readlines()

print(txt)

运行结果:

['Python是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。 ', 'Python是交互式语言: 这意味着,您可以在一个 Python 提示符 >>> 后直接执行代码。 ', 'Python是面向对象语言: 这意味着Python支持面向对象的风格或代码封装在对象的编程技术。 ', 'Python是初学者的语言:Python 对初级程序员而言,是一种伟大的语言,它支持广泛的应用程序开发。 ']

从上面的运行结果可以看出,readlines()方法的返回值为一个字符串行表。所以,也可以以读取列表元素的方法输出。如下所示:

with open('test.txt','r',encoding='utf-8') as f:

txt=f.readlines()

for line in txt:

print(line,end='')

运行结果:

Python是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。

Python是交互式语言: 这意味着,您可以在一个 Python 提示符 >>> 后直接执行代码。

Python是面向对象语言: 这意味着Python支持面向对象的风格或代码封装在对象的编程技术。

Python是初学者的语言:Python 对初级程序员而言,是一种伟大的语言,它支持广泛的应用程序开发。

15.5 写入文件内容

语法格式如下:

file.write(string)

其中,file为打开的文件对象,string为要写入的字符串。

写入文件内容时,文件必须以w(可写)或a(追加)模式打开。否则,会抛出如下异常提示:

Traceback (most recent call last):

File "C:.py", line 2, in

f.write('人生苦短,我用Python!')

io.UnsupportedOperation: not writable

关于write()方法的用法举例如下:

with open('test.txt','a',encoding='utf-8') as f:

f.write('人生苦短,我用Python!')

with open('test.txt','r',encoding='utf-8') as f:

txt=f.read()

print(txt)

运行结果:

Python是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。

Python是交互式语言: 这意味着,您可以在一个 Python 提示符 >>> 后直接执行代码。

Python是面向对象语言: 这意味着Python支持面向对象的风格或代码封装在对象的编程技术。

Python是初学者的语言:Python 对初级程序员而言,是一种伟大的语言,它支持广泛的应用程序开发。

人生苦短,我用Python!

可以看出,由于文件的打开方式为a模式(追加模式),写入的内容被写入到文件的末尾。

在Python中,文件操作方法里没有类似于字符串内的计算长度、查找、替换、截取、分隔等方法,为什么没有?原因可能是文件的类型太复杂,譬如说二进制文件,上述操作的意义不大。如果仅仅要对文本文件进行上述操作,完全可以先把文件的内容读取到字符串中,再用相应的字符串函数或方法去操作就可以了。譬如,要将test.txt文件中的字符串‘Python’替换为’PHP’,则可以用如下代码完成:

txt1=''


with open('test.txt','r',encoding='utf-8') as f:

txt1=f.read() #先将文件内容存入字符串txt1中


txt2=txt1.replace('Python','PHP') #将txt1中的'Python'替换为'PHP',并存入txt2


with open('test.txt','w',encoding='utf-8') as f:

f.write(txt2) #将字符串txt2的内容写回到文件中


这里之所以分两步打开文件(第一次为r模式,第二次为w模式),而没有采用一次读写(r+、w+方式),因为那样比较容易出错。实践证明,将文件的读操作和写操作分开其实是非常正确的选择。

❸ python文件操作

>>>classFileAppend():
def__init__(self,fpath):
self.filepath=fpath
defAppend(self,txt,afterStr=','):
index=open(self.filepath).read().find(afterStr)+1
ifindex!=-1:
f=open(self.filepath,'r+')
f.seek(index,0)
f.write(txt)
f.close()
returnTrue
else:
returnFalse
defAppendCover(self,txt,afterStr=','):
text=open(self.filepath).read()
index=text.find(afterStr)+1
needLen=len(text)-index
ifindex!=-1:
f=open(self.filepath,'r+')
f.seek(index,0)
txt=txt+(''*(needLen-len(txt)))
f.write(txt)
f.close()
returnTrue
else:
returnFalse


>>>open('a.txt','w').write('hellooworld,thisisatest!')
>>>f=FileAppend('a.txt')
>>>f.AppendCover('fuck')
>>>

如果新写入的字符串不够长,则无法完全覆盖,AppendCover会自动补空白字符串,以保证视觉上完全覆盖

❹ python文件操作

我觉得要逐行的话最好这样写:

forlineinfo.readlines():

至于为什么直接fo可以迭代出每行,应该是open函数返回值的内部实现和返回值类型决定的(应该在c代码里,直接转open定义看不见实现细节)。

❺ Python 文件操作

open(filename[,mode,encoding="编码"]) :第一个参数文件名如果不加路径,默认在该py文件目录下(路径举例: E:/XXX或E:\xxx ),第二个是模式,默认为 'r' ——只读,举例: f = open('E:/abc.txt') ,如果要转编码并写入模式:
f = open('E:/abc.txt','w',encoding='utf-8')
1. 模式

2. 方法
(1) close() : 关闭文件,因为文件写入时是写在内存,只有关闭时才写入硬盘,所以写完记得关闭
(2) read(size = -1) :读取文件size个字符,不写默认是-1,此时读取所有内容(换行按 来表示,很不好看),并作为字符串返回,一定要注意 读完以后文件指针将会指向末尾 ,所以下一次在用read方法时会发现读取不出内容了,所以这个就要用seek移动指针或者关闭文件重新定义
(3) tell() :返回当前文件指针指向的位置
(4) seek(offset,from) :移动文件指针,代表从from参数开始偏移offset个字节,0代表起始位置,1代表当前位置,2代表文件末尾
(5) readline() :按序列读取一行内容,默认 为边界
(6) write() :写入内容,但必须要有写入权限才行,否则报错,写完会返回写入的长度,例如: len1 = f.write('abc') ,此时len1就为3
(7) truncate() :删除内容,把当前指针以后的内容全删了,举例:

注:
1.文件还可以转化为 list 之类的,例如: list1 = list(f) ,此时文件内容的按 被隔开,然后可以用for语句读取文件所有内容,举例:

2.上面输出文件内容方法相对低效,所以一般都直接用for输出整个文件,举例:

通过 fileno 函数,我们可以查看一个文件对应的文件描述符,对应的是程序中打开的文件序号,举例:

可以看出python在启动时会先启动标准流的文件(文件描述符分别为:0/1/2),所以之后打开的文件就从3开始递增,当释放一个文件资源时,该描述符序号被释放,之后打开的文件可以继续使用该序号的文件描述符

python中的 print 的本质是通过 sys.stdout 来进行内容输出,而 sys.stdout 的本质是一个"文件",相当于我们所有的输入输出的本质都是在对 sys.stdin / sys.stdout / sys.stderr 这些文件来进行读写操作,举例:

open 函数不仅可以打开本地文件,也可以打开文件描述符,而该参数默认为 True ,代表 close 后会将对应的文件资源释放,而对于一些文件描述符,我们只是希望 close 时将打开文件描述符的对象释放,而不释放对应的文件资源,那么则可以设置 closefd=False ,举例:

需要使用到 chardet 模块,按二进制可读打开文件,然后通过 detect() 方法查看,举例:

所以就可以根据文件来设置编码了:

有时候使用文件的编码解码也可能会出现无法解析的情况,例如两种编码混在同一个文件里的时候,此时可以设置 errors 参数为 ignore 来避免该问题,示例:

可用 os 模块下的 chmod() 函数,具体参考: http://www.runoob.com/python/os-chmod.html

使用 os 模块下的 remove() 函数可以实现删除文件,举例:

可以使用自带的 zipfile 模块来进行操作,举例:

可以使用自带的 tarfile 模块来进行操作,举例:

https://www.cnblogs.com/lotusto/p/5805543.html

❻ Python文件操作,看这篇就足够!

文件的存储方式

在计算机中,文件是以二进制的方式保存在磁盘上的文本文件和二进制文件

文本文件可以使用文本编辑软件查看本质上还是二进制文件

二进制文件保存的内容不是给人直接阅读的,而是提供给其她软件使用的二进制文件不能使用文件编辑软件查看

文件基本操作

在计算机中要操作文件一共包含三个步骤:1.打开文件2.读、写文件

读 将文件内容读入内容写 将内存内容写入文件

模式描述

t文本模式 (默认)。

x写模式,新建一个文件,如果该文件已存在则会报错。

b二进制模式。

+打开一个文件进行更新(可读可写)。

U通用换行模式(不推荐)。

r以只读方式打开文件。文件的指针将会放在文件的开头。这是默认模式。

rb以二进制格式打开一个文件用于只读。文件指针将会放在文件的开头。这是默认模式。一般用于非文本文件如图片等。

r+打开一个文件用于读写。文件指针将会放在文件的开头。

rb+以二进制格式打开一个文件用于读写。文件指针将会放在文件的开头。一般用于非文本文件如图片等。

w打开一个文件只用于写入。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。

wb以二进制格式打开一个文件只用于写入。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。一般用于非文本文件如图片等。

w+打开一个文件用于读写。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。

wb+以二进制格式打开一个文件用于读写。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。一般用于非文本文件如图片等。

a打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,创建新文件进行写入。

ab以二进制格式打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,创建新文件进行写入。

a+打开一个文件用于读写。如果该文件已存在,文件指针将会放在文件的结尾。文件打开时会是追加模式。如果该文件不存在,创建新文件用于读写。

ab+以二进制格式打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。如果该文件不存在,创建新文件用于读写。

文件打开模式有很多,但是我们实际用到的就只有六种。

我们总结一下主要用到的是下面六种

模式可做操作若文件不存在是否覆盖文件原来内容

r只读报错——

r+可读、可写报错是

w只写创建是

w+可读、可写创建是

a只写创建否,追加写

a+可读、可写创建否,追加写

只读模式打开文件——只读(r)

文件若不存在报错:

读写模式打开文件——读写模式(r+)

数据写入之前:

数据写入之后:

会替换掉相同长度的内容

文件若不存在报错:

写模式打开文件——写模式(w)

数据写入之前:

数据写入之后:

这种操作会删除原来的文件内容,重新写入Python,

并且把光标放在文件最开始。

若文件不存在,系统会创建该文件夹并重新写入内容

读写模式打开文件——读写模式(w+)

数据写入之前:

数据写入之后:

这种操作会删除原来的文件内容,重新写入Python,

并且把光标放在文件最开始。

若文件不存在,系统会创建该文件夹并重新写入内容

利用这个原理所以文件写模式(w)、读写模式(w+)还可以用作删除文件内容。

因为他们整个工作原理就是把文件原来的内容删除,然后写入新的内容。

如果我们写入的内容为空,那么不就是删除文件内容。

数据写入之前:

数据写入之后:

写模式打开文件(追加内容)——写模式(a)

数据写入之前:

数据写入之后:

可以看到是在原先内容的基础上在文末追加新的内容!

若文件不存在,系统会创建新的文件夹并写入内容

读写模式打开文件(追加内容)——读写模式(a)

数据写入之前:

数据写入之后:

可以看到是在原先内容的基础上在文末追加新的内容!

若文件不存在,系统会创建新的文件夹并写入内容

二进制模式打开文件

我们看到了在文件打开模式中有以下模式:rb、wb……有这种带 b 的。

什么意思呢?

就是用二进制的方式打开文件。

很明显,我们出现了以下错误:

主要原因是因为编码的问题,可能是因为0x82这个字节在gbk编码中没有这个字符,

可能原字符是两个字节,在gbk里被解析成了一个字节,导致字符不存在。

这就是我们文件打开方式需要使用二进制读取的原因。

文件操作

open 函数负责打开文件,并且返回文件对象

read /write / close 三个方法都需要通过文件对象 来调用

文件和文件夹的操作

在Python中⽂件和⽂件夹的操作要借助os模块⾥⾯的相关功能,

具体步骤如下:

导⼊os模块

使⽤ os 模块相关功能

1、文件重命名

2、删除文件

3、创建文件夹

4、删除文件夹

5、获取当前目录

6、改变默认目录

7、获取目录列表

❼ python读取excel文件如何进行

python编程语言拥有着比较强大的excel读写能力,我们只需要安装xlrd,xlwt这两个库就可以了。那么python读取excel文件如何进行,今天就为大家分享下python读取excel文件的具体操作方法,快来了解下吧!

❽ 如何用python读取excel文件

1.首先说明我是使用的python3.5,我的office版本是2010,首先打开dos命令窗,安装必须的两个库,命令是:

pip3 install xlrd

Pip3 install xlwt

2.准备好excel,例如我的一个工作文件,我放在D盘/网络经验/11.xlsx,只有一个页签A,内容是一些销售数据

3.打开pycharm,新建一个excel.py的文件,首先导入支持库

import xlrdimport xlwt

4.针对刚入门的新手,先介绍三个知识,第一个:获取excel的sheet名称,第二:获取excel行数与列数,第三:获取第几行第几列的具体值,这是最常用的三个知识点

5.贴出代码,具体分析:

(1)要操作excel,首先得打开excel,使用open_workbook(‘路径’)

(2)要获取行与列,使用nrows(行),ncols(列)

(3)获取具体的值,使用cell(row,col).value

workbook=xlrd.open_workbook(r'E:11.xlsx')print (workbook.sheet_names()) sheet2=workbook.sheet_by_name('A') nrows=sheet2.nrows ncols=sheet2.ncols print(nrows,ncols) cell_A=sheet2.cell(1,1).value print(cell_A)

6.要在excel里写入值,就要使用write属性,重点说明写入是用到xlwt这个支援库,思路是先新建excel,然后新建页签B,然后将一组数据写入到B,最后保存为excel.xls,这里建议保存为2003的格式,大部分电脑都能打开,特别注意保存的excel的路径是在python工作文件的目录下面,贴出代码:

stus = [['年', '月'], ['2018', '10'], ['2017', '9'], ['2016', '8']]Excel = xlwt.Workbook() # 新建excelsheet = Excel.add_sheet('B') #新建页签Brow = 0for stu in stus: col = 0 for s in stu: sheet.write(row, col, s) #开始写入 col = col + 1 row = row + 1Excel.save('Excel.xls') #保存

关于如何用python读取excel文件,环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习。

❾ python 读取CSV 文件

读取一个CSV 文件

最全的

一个简化版本

filepath_or_buffer : str,pathlib。str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

可以是URL,可用URL类型包括:http, ftp, s3和文件。对于多文件正在准备中

本地文件读取实例:://localhost/path/to/table.csv

**sep **: str, default ‘,’

指定分隔符。如果不指定参数,则会尝试使用逗号分隔。分隔符长于一个字符并且不是‘s+’,将使用python的语法分析器。并且忽略数据中的逗号。正则表达式例子:' '

**delimiter **: str, default None

定界符,备选分隔符(如果指定该参数,则sep参数失效)

delim_whitespace : boolean, default False.

指定空格(例如’ ‘或者’ ‘)是否作为分隔符使用,等效于设定sep='s+'。如果这个参数设定为Ture那么delimiter 参数失效。

在新版本0.18.1支持

header : int or list of ints, default ‘infer’

指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。如果明确设定header=0 就会替换掉原来存在列名。header参数可以是一个list例如:[0,1,3],这个list表示将文件中的这些行作为列标题(意味着每一列有多个标题),介于中间的行将被忽略掉。

注意:如果skip_blank_lines=True 那么header参数忽略注释行和空行,所以header=0表示第一行数据而不是文件的第一行。

**names **: array-like, default None

用于结果的列名列表,如果数据文件中没有列标题行,就需要执行header=None。默认列表中不能出现重复,除非设定参数mangle_pe_cols=True。

index_col : int or sequence or False, default None

用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。

如果文件不规则,行尾有分隔符,则可以设定index_col=False 来是的pandas不适用第一列作为行索引。

usecols : array-like, default None

返回一个数据子集,该列表中的值必须可以对应到文件中的位置(数字可以对应到指定的列)或者是字符传为文件中的列名。例如:usecols有效参数可能是 [0,1,2]或者是 [‘foo’, ‘bar’, ‘baz’]。使用这个参数可以加快加载速度并降低内存消耗。

as_recarray : boolean, default False

不赞成使用:该参数会在未来版本移除。请使用pd.read_csv(...).to_records()替代。

返回一个Numpy的recarray来替代DataFrame。如果该参数设定为True。将会优先squeeze参数使用。并且行索引将不再可用,索引列也将被忽略。

**squeeze **: boolean, default False

如果文件值包含一列,则返回一个Series

**prefix **: str, default None

在没有列标题时,给列添加前缀。例如:添加‘X’ 成为 X0, X1, ...

**mangle_pe_cols **: boolean, default True

重复的列,将‘X’...’X’表示为‘X.0’...’X.N’。如果设定为false则会将所有重名列覆盖。

dtype : Type name or dict of column -> type, default None

每列数据的数据类型。例如 {‘a’: np.float64, ‘b’: np.int32}

**engine **: {‘c’, ‘python’}, optional

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

使用的分析引擎。可以选择C或者是python。C引擎快但是Python引擎功能更加完备。

converters : dict, default None

列转换函数的字典。key可以是列名或者列的序号。

true_values : list, default None

Values to consider as True

false_values : list, default None

Values to consider as False

**skipinitialspace **: boolean, default False

忽略分隔符后的空白(默认为False,即不忽略).

skiprows : list-like or integer, default None

需要忽略的行数(从文件开始处算起),或需要跳过的行号列表(从0开始)。

skipfooter : int, default 0

从文件尾部开始忽略。 (c引擎不支持)

skip_footer : int, default 0

不推荐使用:建议使用skipfooter ,功能一样。

nrows : int, default None

需要读取的行数(从文件头开始算起)。

na_values : scalar, str, list-like, or dict, default None

一组用于替换NA/NaN的值。如果传参,需要制定特定列的空值。默认为‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘nan’`.

**keep_default_na **: bool, default True

如果指定na_values参数,并且keep_default_na=False,那么默认的NaN将被覆盖,否则添加。

**na_filter **: boolean, default True

是否检查丢失值(空字符串或者是空值)。对于大文件来说数据集中没有空值,设定na_filter=False可以提升读取速度。

verbose : boolean, default False

是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。

skip_blank_lines : boolean, default True

如果为True,则跳过空行;否则记为NaN。

**parse_dates **: boolean or list of ints or names or list of lists or dict, default False

infer_datetime_format : boolean, default False

如果设定为True并且parse_dates 可用,那么pandas将尝试转换为日期类型,如果可以转换,转换方法并解析。在某些情况下会快5~10倍。

**keep_date_col **: boolean, default False

如果连接多列解析日期,则保持参与连接的列。默认为False。

date_parser : function, default None

用于解析日期的函数,默认使用dateutil.parser.parser来做转换。Pandas尝试使用三种不同的方式解析,如果遇到问题则使用下一种方式。

1.使用一个或者多个arrays(由parse_dates指定)作为参数;

2.连接指定多列字符串作为一个列作为参数;

3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates指定)作为参数。

**dayfirst **: boolean, default False

DD/MM格式的日期类型

**iterator **: boolean, default False

返回一个TextFileReader 对象,以便逐块处理文件。

chunksize : int, default None

文件块的大小, See IO Tools docs for more information on iterator and chunksize.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

直接使用磁盘上的压缩文件。如果使用infer参数,则使用 gzip, bz2, zip或者解压文件名中以‘.gz’, ‘.bz2’, ‘.zip’, or ‘xz’这些为后缀的文件,否则不解压。如果使用zip,那么ZIP包中国必须只包含一个文件。设置为None则不解压。

新版本0.18.1版本支持zip和xz解压

thousands : str, default None

千分位分割符,如“,”或者“."

decimal : str, default ‘.’

字符中的小数点 (例如:欧洲数据使用’,‘).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

指定

**lineterminator **: str (length 1), default None

行分割符,只在C解析器下使用。

**quotechar **: str (length 1), optional

引号,用作标识开始和解释的字符,引号内的分割符将被忽略。

quoting : int or csv.QUOTE_* instance, default 0

控制csv中的引号常量。可选 QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3)

doublequote : boolean, default True

双引号,当单引号已经被定义,并且quoting 参数不是QUOTE_NONE的时候,使用双引号表示引号内的元素作为一个元素使用。

escapechar : str (length 1), default None

当quoting 为QUOTE_NONE时,指定一个字符使的不受分隔符限值。

comment : str, default None

标识着多余的行不被解析。如果该字符出现在行首,这一行将被全部忽略。这个参数只能是一个字符,空行(就像skip_blank_lines=True)注释行被header和skiprows忽略一样。例如如果指定comment='#' 解析‘#empty a,b,c 1,2,3’ 以header=0 那么返回结果将是以’a,b,c'作为header。

encoding : str, default None

指定字符集类型,通常指定为'utf-8'. List of Python standard encodings

dialect : str or csv.Dialect instance, default None

如果没有指定特定的语言,如果sep大于一个字符则忽略。具体查看csv.Dialect 文档

tupleize_cols : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True

如果一行包含太多的列,那么默认不会返回DataFrame ,如果设置成false,那么会将改行剔除(只能在C解析器下使用)。

warn_bad_lines : boolean, default True

如果error_bad_lines =False,并且warn_bad_lines =True 那么所有的“bad lines”将会被输出(只能在C解析器下使用)。

**low_memory **: boolean, default True

分块加载到内存,再低内存消耗中解析。但是可能出现类型混淆。确保类型不被混淆需要设置为False。或者使用dtype 参数指定类型。注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,而忽略类型(只能在C解析器中有效)

**buffer_lines **: int, default None

不推荐使用,这个参数将会在未来版本移除,因为他的值在解析器中不推荐使用

compact_ints : boolean, default False

不推荐使用,这个参数将会在未来版本移除

如果设置compact_ints=True ,那么任何有整数类型构成的列将被按照最小的整数类型存储,是否有符号将取决于use_unsigned 参数

use_unsigned : boolean, default False

不推荐使用:这个参数将会在未来版本移除

如果整数列被压缩(i.e. compact_ints=True),指定被压缩的列是有符号还是无符号的。

memory_map : boolean, default False

如果使用的文件在内存内,那么直接map文件使用。使用这种方式可以避免文件再次进行IO操作。

ref:
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

❿ python读取文件—txt文件常用读写操作

f = open("data.txt","r")   #设置文件对象

f.close() #关闭文件

为了方便,避免忘记close掉这个文件对象,可以用下面这种方式替代

with open('data.txt',"r") as f:    #设置文件对象

 str = f.read()    #可以是随便对文件的操作

f = open("data.txt","r")   #设置文件对象

str = f.read()     #将txt文件的所有内容读入到字符串str中

f.close()   #将文件关闭

f = open("data.txt","r")   #设置文件对象

line = f.readline()

line = line[:-1]

while line:             #直到读取完文件

     line = f.readline()  #读取一行文件,包括换行符

     line = line[:-1]     #去掉换行符,也可以不去

f.close() #关闭文件

data = []

for line in open("data.txt","r"): #设置文件对象并读取每一行文件

     data.append(line)               #将每一行文件加入到list中

 f = open("data.txt","r")   #设置文件对象

 data = f.readlines()  #直接将文件中按行读到list里,效果与方法2一样

 f.close()             #关闭文件

可以使用pandas的.read_csv,读取文件的时候可以给每一列起名字,通过列名来调取相应列的数据。

import pandas as pd

data = pd.read_csv(" OSDO1012.txt",sep=',',header=None, names=['lat','lon','time','z']

使用data.lat就可以读取名为lat这一列的数据

 data = np.loadtxt("data.txt",skiprows = 1)   #将文件中数据加载到data数组里,并且跳过第一行

 with open('data.txt','w') as f:    #设置文件对象

    f.write(str)                 #将字符串写入文件中

data = ['a','b','c']

单层列表写入文件

with open("data.txt","w") as f:

    f.writelines(data)

每一项用空格隔开,一个列表是一行写入文件

data =[ ['a','b','c'],['a','b','c'],['a','b','c']]

with open("data.txt","w") as f:                      #设置文件对象

     for i in data:                                    #对于双层列表中的数据

      i = str(i).strip('[').strip(']').replace(',','').replace('\'','')+'\n'  #将其中每一个列表规范化成字符串

     f.write(i)                      #写入文件

直接将每一项都写入文件

data =[ ['a','b','c'],['a','b','c'],['a','b','c']]

with open("data.txt","w") as f:                    #设置文件对象

     for i in data:                                      #对于双层列表中的数据

          f.writelines(i)                            #写入文件

np.savetxt("data.txt",data)     #将数组中数据写入到data.txt文件

np.save("data.txt",data)        #将数组中数据写入到data.txt文件

热点内容
教育在线直播源码 发布:2024-12-27 15:56:43 浏览:200
为什么安卓不能装ios 发布:2024-12-27 15:56:40 浏览:659
小鹏p7买哪个配置最划算 发布:2024-12-27 15:53:03 浏览:270
经典算法程序 发布:2024-12-27 15:51:23 浏览:568
芒果tv缓存不了 发布:2024-12-27 15:51:19 浏览:175
python2b 发布:2024-12-27 15:47:09 浏览:417
An加脚本 发布:2024-12-27 15:36:24 浏览:904
编译器前端代码 发布:2024-12-27 15:14:59 浏览:938
消毒计算法 发布:2024-12-27 15:11:38 浏览:632
typescript浏览器编译 发布:2024-12-27 15:10:42 浏览:924