java内存流
① java以下代码中,我用文件输出流和内存输出流同样输出output对象,为什么结果不一样
呃,时隔几年,不知道你解决问题没有。首先应该明白,System.out.println(OBJ)会自动调用OBJ.toString()方法。查阅官方文档表示,ByteArrayInputStream类中重写了toString( )方法,Converts the buffer's contents into a string decoding bytes using the platform's default character set.即 “使用平台的默认字符集将缓冲区的内容转换为字符串解码字节。
但是 FileOutputStream类中并未重写toString( ) 。使用的是从Object类中继承下来的。所以你能看到 obj@xxx 格式的输出。
② java就业方向有哪些
对于大多数同学而言,学习编程语言就是为了更好的就业。因为Java在电子商务、企业级开发应用、游戏编程等众多领域行业发挥着重要作用,所以学习Java一直是一股热潮。那么,2020年,Java的职业方向有哪些呢?小编带你解析。
用途广泛的Java造就了Java工程师的辉煌,使其在软件工程师的领域里独占鳌头!Java软件工程师运用Java这个开发工具去完成软件产品的软件程序设计、开发、测试、维护升级等工作。随着Internet的迅速发展,Web应用日益广泛,Java语言也得到了迅速发展。
Java是目前世界上流行的计算机编程语言,是一种可以编写跨平台应用软件的面向对象的程序设计语言。这可以概括Java有着自己独特的优势:语言简单、是一个面向对象、分布式应用并且安全、体系结构中立并且可移植,重要,它是一个动态语言。
计算机专业的大学生欲成为Java工程师,便捷的一条路就是参加以实战项目为主要教学方法的Java职业技能培训,从而有效地缩短同企业具体用人需求之间的差距。有关Java的未来职业发展有:1、成为管理人员,例如产品研发经理,技术经理,项目经理等继续;2、技术工作之路,成为高级软件工程师、需求工程师等。
Java软件工程师一般月薪范围在6000-10000元,远远超过了应届毕业生月薪2500元的平均水平。通常来说,有一年工作经验的Java高级软件工程师的薪酬大致在年薪10—13万左右。Java可以从事JSP网站开发、Java编程、Java游戏开发、Java桌面程序设计,以及其他与Java语言编程相关的工作,可进入电信、银行、保险专业软件开发公司等从事软件设计和开发工作。
据权威统计机构统计——在所有软件开发类人才的需求中,对Java工程师的需求达到全部需求量的60%~70%。面对如此好的就业前景,还等什么
③ java 流占内存吗
占内存啊
,流是个抽象的概念,是对
输入输出设备
的抽象,
Java程序
中,对于数据的输入/输出操作都是以“流”的方式进行。设备可以是文件,网络,内存等。
stream还有很多种,
具体的你可以看看相关的资料
!
④ java怎么将生成的文件放入内存
这个要使用到内存流。BufferedOutputStream或者BufferedWriter。
文件的读取和写入都应该会了吧?普通的流读写都是直接从文件中读取或者写入到文件中的,而内存流则是把文件中的内容写入到电脑内存或者是从内存中读取出来。具体的话就是把输出流替换成BufferedOutputStream或者BufferedWriter即可
⑤ 哪位能描述一下 java 中内存的分区情况和各类变量在内存中的存贮情况。
Java内存分配与管理是Java的核心技术之一,一般Java在内存分配时会涉及到以下区域:
◆寄存器:我们在程序中无法控制
◆栈:存放基本类型的数据和对象的引用,但对象本身不存放在栈中,而是存放在堆中
◆堆:存放用new产生的数据
◆静态域:存放在对象中用static定义的静态成员
◆常量池:存放常量
◆非RAM存储:硬盘等永久存储空间
Java内存分配中的栈
在函数中定义的一些基本类型的变量数据和对象的引用变量都在函数的栈内存中分配。
当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当该变量退出该作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。
Java内存分配中的堆
堆内存用来存放由new创建的对象和数组。在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。
在堆中产生了一个数组或对象后,还可以在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。引用变量就相当于是为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。引用变量就相当于是为数组或者对象起的一个名称。
引用变量是普通的变量,定义时在栈中分配,引用变量在程序运行到其作用域之外后被释放。而数组和对象本身在堆中分配,即使程序运行到使用new产生数组或者对象的语句所在的代码块之外,数组和对象本身占据的内存不会被释放,数组和对象在没有引用变量指向它的时候,才变为垃圾,不能在被使用,但仍然占据内存空间不放,在随后的一个不确定的时间被垃圾回收器收走(释放掉)。这也是Java比较占内存的原因。
实际上,栈中的变量指向堆内存中的变量,这就是Java中的指针!
常量池(constantpool)
常量池指的是在编译期被确定,并被保存在已编译的.class文件中的一些数据。除了包含代码中所定义的各种基本类型(如int、long等等)和对象型(如String及数组)的常量值(final)还包含一些以文本形式出现的符号引用,比如:
◆类和接口的全限定名;
◆字段的名称和描述符;
◆方法和名称和描述符。
虚拟机必须为每个被装载的类型维护一个常量池。常量池就是该类型所用到常量的一个有序集和,包括直接常量(string,integer和floatingpoint常量)和对其他类型,字段和方法的符号引用。
对于String常量,它的值是在常量池中的。而JVM中的常量池在内存当中是以表的形式存在的,对于String类型,有一张固定长度的CONSTANT_String_info表用来存储文字字符串值,注意:该表只存储文字字符串值,不存储符号引用。说到这里,对常量池中的字符串值的存储位置应该有一个比较明了的理解了。
在程序执行的时候,常量池会储存在MethodArea,而不是堆中。
堆与栈
Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。
栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。栈中主要存放一些基本类型的变量数据(int,short,long,byte,float,double,boolean,char)和对象句柄(引用)。
栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义:
1. inta=3;
2. intb=3;
编译器先处理inta=3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理intb=3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。
这时,如果再令a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b的值。
要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b,它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。
String是一个特殊的包装类数据。可以用:
Stringstr=newString("abc");
Stringstr="abc";
两种的形式来创建,第一种是用new()来新建对象的,它会在存放于堆中。每调用一次就会创建一个新的对象。而第二种是先在栈中创建一个对String类的对象引用变量str,然后通过符号引用去字符串常量池里找有没有"abc",如果没有,则将"abc"存放进字符串常量池,并令str指向”abc”,如果已经有”abc”则直接令str指向“abc”。
比较类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==,下面用例子说明上面的理论。
1.Stringstr1="abc";
2.Stringstr2="abc";
3.System.out.println(str1==str2);//true
可以看出str1和str2是指向同一个对象的。
1.Stringstr1=newString("abc");
2.Stringstr2=newString("abc");
3.System.out.println(str1==str2);//false
用new的方式是生成不同的对象。每一次生成一个。
因此用第二种方式创建多个”abc”字符串,在内存中其实只存在一个对象而已.这种写法有利与节省内存空间.同时它可以在一定程度上提高程序的运行速度,因为JVM会自动根据栈中数据的实际情况来决定是否有必要创建新对象。而对于Stringstr=newString("abc");的代码,则一概在堆中创建新对象,而不管其字符串值是否相等,是否有必要创建新对象,从而加重了程序的负担。
另一方面,要注意:我们在使用诸如Stringstr="abc";的格式定义类时,总是想当然地认为,创建了String类的对象str。担心陷阱!对象可能并没有被创建!而可能只是指向一个先前已经创建的对象。只有通过new()方法才能保证每次都创建一个新的对象。
由于String类的immutable性质,当String变量需要经常变换其值时,应该考虑使用StringBuffer类,以提高程序效率。
1.首先String不属于8种基本数据类型,String是一个对象。因为对象的默认值是null,所以String的默认值也是null;但它又是一种特殊的对象,有其它对象没有的一些特性。
2.newString()和newString(”")都是申明一个新的空字符串,是空串不是null;
3.Stringstr=”kvill”;Stringstr=newString(”kvill”)的区别
示例:
1.Strings0="kvill";
2.Strings1="kvill";
3.Strings2="kv"+"ill";
4.System.out.println(s0==s1);
5.System.out.println(s0==s2);
结果为:
true
true
首先,我们要知结果为道Java会确保一个字符串常量只有一个拷贝。
因为例子中的s0和s1中的”kvill”都是字符串常量,它们在编译期就被确定了,所以s0==s1为true;而”kv”和”ill”也都是字符串常量,当一个字符串由多个字符串常量连接而成时,它自己肯定也是字符串常量,所以s2也同样在编译期就被解析为一个字符串常量,所以s2也是常量池中”kvill”的一个引用。所以我们得出s0==s1==s2;用newString()创建的字符串不是常量,不能在编译期就确定,所以newString()创建的字符串不放入常量池中,它们有自己的地址空间。
示例:
6.Strings0="kvill";
7.Strings1=newString("kvill");
8.Strings2="kv"+newString("ill");
9.System.out.println(s0==s1);
10.System.out.println(s0==s2);
11.System.out.println(s1==s2);
结果为:
false
false
false
例2中s0还是常量池中"kvill”的应用,s1因为无法在编译期确定,所以是运行时创建的新对象”kvill”的引用,s2因为有后半部分newString(”ill”)所以也无法在编译期确定,所以也是一个新创建对象”kvill”的应用;明白了这些也就知道为何得出此结果了。
4.String.intern():
再补充介绍一点:存在于.class文件中的常量池,在运行期被JVM装载,并且可以扩充。String的intern()方法就是扩充常量池的一个方法;当一个String实例str调用intern()方法时,Java查找常量池中是否有相同Unicode的字符串常量,如果有,则返回其的引用,如果没有,则在常量池中增加一个Unicode等于str的字符串并返回它的引用;看示例就清楚了
示例:
1.Strings0="kvill";
2.Strings1=newString("kvill");
3.Strings2=newString("kvill");
4.System.out.println(s0==s1);
5.System.out.println("**********");
6.s1.intern();
7.s2=s2.intern();//把常量池中"kvill"的引用赋给s2
8.System.out.println(s0==s1);
9.System.out.println(s0==s1.intern());
10.System.out.println(s0==s2);
结果为:
false
false//虽然执行了s1.intern(),但它的返回值没有赋给s1
true//说明s1.intern()返回的是常量池中"kvill"的引用
true
最后我再破除一个错误的理解:有人说,“使用String.intern()方法则可以将一个String类的保存到一个全局String表中,如果具有相同值的Unicode字符串已经在这个表中,那么该方法返回表中已有字符串的地址,如果在表中没有相同值的字符串,则将自己的地址注册到表中”如果我把他说的这个全局的String表理解为常量池的话,他的最后一句话,”如果在表中没有相同值的字符串,则将自己的地址注册到表中”是错的:
示例:
1.Strings1=newString("kvill");
2.Strings2=s1.intern();
3.System.out.println(s1==s1.intern());
4.System.out.println(s1+""+s2);
5.System.out.println(s2==s1.intern());
结果:
1.false
2.kvillkvill
3.true
在这个类中我们没有声名一个”kvill”常量,所以常量池中一开始是没有”kvill”的,当我们调用s1.intern()后就在常量池中新添加了一个”kvill”常量,原来的不在常量池中的”kvill”仍然存在,也就不是“将自己的地址注册到常量池中”了。
s1==s1.intern()为false说明原来的”kvill”仍然存在;s2现在为常量池中”kvill”的地址,所以有s2==s1.intern()为true。
5.关于equals()和==:
这个对于String简单来说就是比较两字符串的Unicode序列是否相当,如果相等返回true;而==是比较两字符串的地址是否相同,也就是是否是同一个字符串的引用。
6.关于String是不可变的
这一说又要说很多,大家只要知道String的实例一旦生成就不会再改变了,比如说:Stringstr=”kv”+”ill”+”“+”ans”;就是有4个字符串常量,首先”kv”和”ill”生成了”kvill”存在内存中,然后”kvill”又和””生成“kvill“存在内存中,最后又和生成了”kvillans”;并把这个字符串的地址赋给了str,就是因为String的”不可变”产生了很多临时变量,这也就是为什么建议用StringBuffer的原因了,因为StringBuffer是可改变的。
下面是一些String相关的常见问题:
String中的final用法和理解
finalStringBuffera=newStringBuffer("111");
finalStringBufferb=newStringBuffer("222");
a=b;//此句编译不通过
finalStringBuffera=newStringBuffer("111");
a.append("222");//编译通过
可见,final只对引用的"值"(即内存地址)有效,它迫使引用只能指向初始指向的那个对象,改变它的指向会导致编译期错误。至于它所指向的对象的变化,final是不负责的。
String常量池问题的几个例子
下面是几个常见例子的比较分析和理解:
Stringa="a1";
Stringb="a"+1;
System.out.println((a==b));//result=true
Stringa="atrue";
Stringb="a"+"true";
System.out.println((a==b));//result=true
Stringa="a3.4";
Stringb="a"+3.4;
System.out.println((a==b));//result=true
分析:JVM对于字符串常量的"+"号连接,将程序编译期,JVM就将常量字符串的"+"连接优化为连接后的值,拿"a"+1来说,经编译器优化后在class中就已经是a1。在编译期其字符串常量的值就确定下来,故上面程序最终的结果都为true。
Stringa="ab";
Stringbb="b";
Stringb="a"+bb;
System.out.println((a==b));//result=false
分析:JVM对于字符串引用,由于在字符串的"+"连接中,有字符串引用存在,而引用的值在程序编译期是无法确定的,即"a"+bb无法被编译器优化,只有在程序运行期来动态分配并将连接后的新地址赋给b。所以上面程序的结果也就为false。
Stringa="ab";
finalStringbb="b";
Stringb="a"+bb;
System.out.println((a==b));//result=true
分析:和[3]中唯一不同的是bb字符串加了final修饰,对于final修饰的变量,它在编译时被解析为常量值的一个本地拷贝存储到自己的常量池中或嵌入到它的字节码流中。所以此时的"a"+bb和"a"+"b"效果是一样的。故上面程序的结果为true。
Stringa="ab";
finalStringbb=getBB();
Stringb="a"+bb;
System.out.println((a==b));//result=false
privatestaticStringgetBB(){
return"b";
}
分析:JVM对于字符串引用bb,它的值在编译期无法确定,只有在程序运行期调用方法后,将方法的返回值和"a"来动态连接并分配地址为b,故上面程序的结果为false。
通过上面4个例子可以得出得知:
Strings="a"+"b"+"c";
就等价于Strings="abc";
Stringa="a";
Stringb="b";
Stringc="c";
Strings=a+b+c;
这个就不一样了,最终结果等于:
1.StringBuffertemp=newStringBuffer();
2.temp.append(a).append(b).append(c);
3.Strings=temp.toString();
由上面的分析结果,可就不难推断出String采用连接运算符(+)效率低下原因分析,形如这样的代码:
publicclassTest{
publicstaticvoidmain(Stringargs[]){
Strings=null;
for(inti=0;i<100;i++){
s+="a";
}
}
}
每做一次+就产生个StringBuilder对象,然后append后就扔掉。下次循环再到达时重新产生个StringBuilder对象,然后append字符串,如此循环直至结束。如果我们直接采用StringBuilder对象进行append的话,我们可以节省N-1次创建和销毁对象的时间。所以对于在循环中要进行字符串连接的应用,一般都是用StringBuffer或StringBulider对象来进行append操作。
String对象的intern方法理解和分析:
1.publicclassTest4{
2.privatestaticStringa="ab";
3.publicstaticvoidmain(String[]args){
4.Strings1="a";
5.Strings2="b";
6.Strings=s1+s2;
7.System.out.println(s==a);//false
8.System.out.println(s.intern()==a);//true
9.}
10.}
这里用到Java里面是一个常量池的问题。对于s1+s2操作,其实是在堆里面重新创建了一个新的对象,s保存的是这个新对象在堆空间的的内容,所以s与a的值是不相等的。而当调用s.intern()方法,却可以返回s在常量池中的地址值,因为a的值存储在常量池中,故s.intern和a的值相等。
总结
栈中用来存放一些原始数据类型的局部变量数据和对象的引用(String,数组.对象等等)但不存放对象内容
堆中存放使用new关键字创建的对象.
字符串是一个特殊包装类,其引用是存放在栈里的,而对象内容必须根据创建方式不同定(常量池和堆).有的是编译期就已经创建好,存放在字符串常量池中,而有的是运行时才被创建.使用new关键字,存放在堆中。
⑥ java io 流 有一种流是边读边写的 , 还一种 不管文件多大都读到内存中 , 分别叫什么
边读边写用多线程每个流都可以做到,管道流就是典型的流!
不管文件多大,读到内存那是不可能的,你所说的应该是内存流
内存流典型的流(字节数组流),特点内部封装一个可变长度的数组,
特点就是处理速度快,可对外提供完整数据的数组,非常方便!
试想一下,你一个文件8G大,你能全都读到内存中去?对么....
⑦ java在内存中建立个字节数组如果向这个字节数组中写入数据用哪个是用输出流吗还是用输入流
可以考虑使用ByteArrayInputStream & ByteArrayOutputStream
字节数组位于内存
另外,“输入流是从硬盘到内存的读操作” & “输出流是从内存到硬盘的写操作” 这句严格说不正确。输入流、输出流的源和目标均是抽象概念,不一定是硬盘或者文件的
⑧ java内存泄漏怎么处理
一、Java内存回收机制
不论哪种语言的内存分配方式,都需要返回所分配内存的真实地址,也就是返回一个指针到内存块的首地址。Java中对象是采用new或者反射的方法创建的,这些对象的创建都是在堆(Heap)中分配的,所有对象的回收都是由Java虚拟机通过垃圾回收机制完成的。GC为了能够正确释放对象,会监控每个对象的运行状况,对他们的申请、引用、被引用、赋值等状况进行监控,Java会使用有向图的方法进行管理内存,实时监控对象是否可以达到,如果不可到达,则就将其回收,这样也可以消除引用循环的问题。在Java语言中,判断一个内存空间是否符合垃圾收集标准有两个:一个是给对象赋予了空值null,以下再没有调用过,另一个是给对象赋予了新值,这样重新分配了内存空间。
二、Java内存泄露引起原因
首先,什么是内存泄露看经常听人谈起内存泄露,但要问什么是内存泄露,没几个说得清楚。内存泄露是指无用对象(不再使用的对象)持续占有内存或无用对象的内存得不到及时释放,从而造成的内存空间的浪费称为内存泄露。内存泄露有时不严重且不易察觉,这样开发者就不知道存在内存泄露,但有时也会很严重,会提示你Out of memory。
那么,Java内存泄露根本原因是什么呢看长生命周期的对象持有短生命周期对象的引用就很可能发生内存泄露,尽管短生命周期对象已经不再需要,但是因为长生命周期对象持有它的引用而导致不能被回收,这就是java中内存泄露的发生场景。具体主要有如下几大类:
1、静态集合类引起内存泄露:
像HashMap、Vector等的使用最容易出现内存泄露,这些静态变量的生命周期和应用程序一致,他们所引用的所有的对象Object也不能被释放,因为他们也将一直被Vector等引用着。
例:
Static Vector v = new Vector(10);
for (int i = 1; i<100; i++)
{
Object o = new Object();
v.add(o);
o = null;
}//
在这个例子中,循环申请Object 对象,并将所申请的对象放入一个Vector 中,如果仅仅释放引用本身(o=null),那么Vector 仍然引用该对象,所以这个对象对GC 来说是不可回收的。因此,如果对象加入到Vector 后,还必须从Vector 中删除,最简单的方法就是将Vector对象设置为null。
2、当集合里面的对象属性被修改后,再调用remove()方法时不起作用。
例:
public static void main(String[] args)
{
Set<Person> set = new HashSet<Person>();
Person p1 = new Person("唐僧","pwd1",25);
Person p2 = new Person("孙悟空","pwd2",26);
Person p3 = new Person("猪八戒","pwd3",27);
set.add(p1);
set.add(p2);
set.add(p3);
System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:3 个元素!
p3.setAge(2); //修改p3的年龄,此时p3元素对应的hashcode值发生改变
set.remove(p3); //此时remove不掉,造成内存泄漏
set.add(p3); //重新添加,居然添加成功
System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:4 个元素!
for (Person person : set)
{
System.out.println(person);
}
}
3、监听器
在java 编程中,我们都需要和监听器打交道,通常一个应用当中会用到很多监听器,我们会调用一个控件的诸如addXXXListener()等方法来增加监听器,但往往在释放对象的时候却没有记住去删除这些监听器,从而增加了内存泄漏的机会。
4、各种连接
比如数据库连接(dataSourse.getConnection()),网络连接(socket)和io连接,除非其显式的调用了其close()方法将其连接关闭,否则是不会自动被GC 回收的。对于Resultset 和Statement 对象可以不进行显式回收,但Connection 一定要显式回收,因为Connection 在任何时候都无法自动回收,而Connection一旦回收,Resultset 和Statement 对象就会立即为NULL。但是如果使用连接池,情况就不一样了,除了要显式地关闭连接,还必须显式地关闭Resultset Statement 对象(关闭其中一个,另外一个也会关闭),否则就会造成大量的Statement 对象无法释放,从而引起内存泄漏。这种情况下一般都会在try里面去的连接,在finally里面释放连接。
5、内部类和外部模块等的引用
内部类的引用是比较容易遗忘的一种,而且一旦没释放可能导致一系列的后继类对象没有释放。此外程序员还要小心外部模块不经意的引用,例如程序员A 负责A 模块,调用了B 模块的一个方法如:
public void registerMsg(Object b);
这种调用就要非常小心了,传入了一个对象,很可能模块B就保持了对该对象的引用,这时候就需要注意模块B 是否提供相应的操作去除引用。
6、单例模式
不正确使用单例模式是引起内存泄露的一个常见问题,单例对象在被初始化后将在JVM的整个生命周期中存在(以静态变量的方式),如果单例对象持有外部对象的引用,那么这个外部对象将不能被jvm正常回收,导致内存泄露,考虑下面的例子:
class A{
public A(){
B.getInstance().setA(this);
}
....
}
//B类采用单例模式
class B{
private A a;
private static B instance=new B();
public B(){}
public static B getInstance(){
return instance;
}
public void setA(A a){
this.a=a;
}
//getter...
}
显然B采用singleton模式,它持有一个A对象的引用,而这个A类的对象将不能被回收。想象下如果A是个比较复杂的对象或者集合类型会发生什么情况
⑨ 如何防止java中的内存泄漏
尽管java虚
拟机和垃圾回收机制治理着大部分的内存事务,但是在java软件中还是可能存在内存泄漏的情况。的确,在大型工程中,内存泄漏是一个普遍问题。避免内存泄
漏的第一步,就是要了解他们发生的原因。这篇文章就是要介绍一些常见的缺陷,然后提供一些非常好的实践例子来指导你写出没有内存泄漏的代码。一旦你的程序
存在内存泄漏,要查明代码中引起泄漏的原因是很困难的。同时这篇文章也要介绍一个新的工具来查找内存泄漏,然后指明发生的根本原因。这个工具轻易上手,可
以让你找到产品级系统中的内存泄漏。
垃圾回收(GC)的角色
虽然垃圾回收关心着大部分的
问题,包括内存治理,使得程序员的任务显得更加轻松,但是程序员还是可能犯些错误导致内存泄漏问题。GC(垃圾回收)通过递归对所有从“根”对象(堆栈中
的对象,静态数据成员,JNI句柄等等)继续下来的引用进行工作,然后标记所有可以访问的活动着的对象。而这些对象变成了程序唯一能够操纵的对象,其他的
对象都被释放了。因为GC使得程序不能够访问那些被释放的对象,所以这样做是安全的。
内存治理可以说是自动的,但是这并没有让程
序员脱离内存治理问题。比方说,对于内存的分配(还有释放)总是存在一定的开销,尽管这些开销对程序员来说是隐含的。一个程序假如创建了很多对象,那么它
就要比完成相同任务而创建了较少对象的程序执行的速度慢(假如其他的条件都相同)。
文章更多想说的,导致内存泄漏主要的原因是,
先前申请了内存空间而忘记了释放。假如程序中存在对无用对象的引用,那么这些对象就会驻留内存,消耗内存,因为无法让垃圾回收器验证这些对象是否不再需
要。正如我们前面看到的,假如存在对象的引用,这个对象就被定义为“活动的”,同时不会被释放。要确定对象所占内存将被回收,程序员就要务必确认该对象不
再会被使用。典型的做法就是把对象数据成员设为null或者从集合中移除该对象。注重,当局部变量不需要时,不需明显的设为null,因为一个方法执行完
毕时,这些引用会自动被清理。
从更高一个层次看,这就是所有存在内存管的语言对内存泄漏所考虑的事情,剩余的对象引用将不再会被使用。
典型的泄漏
既然我们知道了在java中确实会存在内存泄漏,那么就让我们看一些典型的泄漏,并找出他们发生的原因。
全局集合
在大型应用程序中存在各种各样的全局数据仓库是很普遍的,比如一个JNDI-tree或者一个session table。在这些情况下,注重力就被放在了治理数据仓库的大小上。当然是有一些适当的机制可以将仓库中的无用数据移除。
可以有很多不同的解决形式,其中最常用的是一种周期运行的清除作业。这个作业会验证仓库中的数据然后清除一切不需要的数据。
另一个办法是计算引用的数量。集合负责跟踪集合中每个元素的引用者数量。这要求引用者通知集合什么时候已经对元素处理完毕。当引用者的数目为零时,就可以移除集合中的相关元素。
高速缓存
高速缓存是一种用来快速查找已经执行过的操作结果的数据结构。因此,假如一个操作执行很慢的话,你可以先把普通输入的数据放入高速缓存,然后过些时间再调用高速缓存中的数据。
高速缓存多少还有一点动态实现的意思,当数据操作完毕,又被送入高速缓存。一个典型的算法如下所示:
1. 检查结果是否在高速缓存中,存在则返回结果;
2. 假如结果不在,那么计算结果;
3. 将结果放入高速缓存,以备将来的操作调用。
这个算法的问题(或者说潜在的内存泄漏)在最后一步。假如操作是分别多次输入,那么存入高速缓存的内容将会非常大。很明显这个方法不可取。
为了避免这种潜在的致命错误设计,程序就必须确定高速缓存在他所使用的内存中有一个上界。因此,更好的算法是:
1. 检查结果是否在高速缓存中,存在则返回结果;
2. 假如结果不在,那么计算结果;
3. 假如高速缓存所占空间过大,移除缓存中旧的结果;
4. 将结果放入高速缓存,以备将来的操作调用。
通过不断的从缓存中移除旧的结果,我们可以假设,将来,最新输入的数据可能被重用的几率要远远大于旧的结果。这通常是一个不错的设想。
这个新的算法会确保高速缓存的容量在预先确定的范围内。精确的范围是很难计算的,因为缓存中的对象存在引用时将继续有效。正确的划分高速缓存的大小是一个复杂的任务,你必须权衡可使用内存大小和数据快速存取之间的矛盾。
另一个解决这个问题的途径是使用java.lang.ref.SoftReference类来将对象放入高速缓存。这个方法可以保证当虚拟机用完内存或者需要更多堆的时候,可以释放这些对象的引用。
类装载器
Java类装载器创建就存在很多导致内存泄漏的漏洞。由于类装载器的复杂结构,使得很难得到内存泄漏的透视图。这些困难不仅仅是由于类装载器只与“普通
的”对象引用有关,同时也和对象内部的引用有关,比如数据变量,方法和各种类。这意味着只要存在对数据变量,方法,各种类和对象的类装载器,那么类装载器
将驻留在JVM中。既然类装载器可以同很多的类关联,同时也可以和静态数据变量关联,那么相当多的内存就可能发生泄漏。
定位内存泄漏
经常地,程序内存泄漏的最初迹象发生在出错之后,在你的程序中得到一个OutOfMemoryError。这种典型的情况发生在产品环境中,而在那里,
你希望内存泄漏尽可能的少,调试的可能性也达到最小。也许你的测试环境和产品的系统环境不尽相同,导致泄露的只会在产品中暴露。这种情况下,你需要一个低
负荷的工具来监听和寻找内存泄漏。同时,你还需要把这个工具同你的系统联系起来,而不需要重新启动他或者机械化你的代码。也许更重要的是,当你做分析的时
候,你需要能够同工具分离而使得系统不会受到干扰。
一个OutOfMemoryError经常是内存泄漏的一个标志,有可能应用
程序的确用了太多的内存;这个时候,你既不能增加JVM的堆的数量,也不能改变你的程序而使得他减少内存使用。但是,在大多数情况下,一个
OutOfMemoryError是内存泄漏的标志。一个解决办法就是继续监听GC的活动,看看随时间的流逝,内存使用量是否会增加,假如有,程序中一定
存在内存泄漏。
具体输出
有很多办法来监听垃圾回收器的活动。也许运用最广泛的就是以:-Xverbose:gc选项运行JVM,然后观察输出结果一段时间。
[memory] 10.109-10.235: GC 65536K->16788K (65536K), 126.000 ms
箭头后的值(在这个例子中 16788K)是垃圾回收后堆的使用量。
控制台
观察这些无尽的GC具体统计输出是一件非常单调乏味的事情。好在有一些工具来代替我们做这些事情。The JRockit Management Console可以用图形的方式输出堆的使用量。通过观察图像,我们可以很方便的观察堆的使用量是否伴随时间增长。
Figure 1. The JRockit Management Console
治理控制台甚至可以配置成在堆使用量出现问题(或者其他的事件发生)时向你发送邮件。这个显然使得监控内存泄漏更加轻易。
内存泄漏探测工具
有很多专门的内存泄漏探测工具。其中The JRockit Memory Leak
Detector可以供来观察内存泄漏也可以针对性地找到泄漏的原因。这个强大的工具被紧密地集成在JRockit
JVM中,可以提供最低可能的内存事务也可以轻松的访问虚拟机的堆。
专门工具的优势
一旦
你知道程序中存在内存泄漏,你需要更专业的工具来查明为什么这里会有泄漏。而JVM是不可能告诉你的。现在有很多工具可以利用了。这些工具本质上主要通过
两种方法来得到JVM的存储系统信息的:JVMTI和字节码仪器。Java虚拟机工具接口(JVMTI)和他的原有形式JVMPI(压型接口,PRofiling Interface)都是标准接口,作为外部工具同JVM进行通信,搜集JVM的信息。字节码仪器则是引用通过探针获得工具所需的字节信息的预处理技术。
通过这些技术来侦测内存泄漏存在两个缺点,而这使得他们在产品级环境中的运用不够理想。首先,根据两者对内存的使用量和内存事务性能的降级是不可以忽略
的。从JVM获得的堆的使用量信息需要在工具中导出,收集和处理。这意味着要分配内存。按照JVM的性能导出信息是需要开销的,垃圾回收器在搜集信息的时
候是运行的非常缓慢的。另一个缺点就是,这些工具所需要的信息是关系到JVM的。让工具在JVM开始运行的时候和它关联,而在分析的时候,分离工具而保持
JVM运行,这显然是不可能的。
既然JRockit Memory Leak
Detector是被集成到JVM中的,那么以上两种缺点就不再存在。首先,大部分的处理和分析都是在JVM中完成的,所以就不再需要传送或重建任何数
据。处理也可以建立在垃圾回收器的基础上,即提高速度。再有,内存泄漏侦测器可以同一个运行的JVM关联和分离,只要JVM在开始的时候伴随着
–Xmanagement选项(通过远程JMX接口答应监听和治理JVM)。当工具分离以后,工具不会遗留任何东西在JVM中;JVM就可以全速运行代码
就似乎工具关联之前一样。
⑩ Java 输出流 内存溢出问题
把tomcat 的内存调大