python多线程下载图片
① 如何用python做爬虫
1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?
很简单
import Queue
initial_page = "初始化页"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...
及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。
所以,不要问怎么入门,直接上路就好了:)
② 用python爬虫下载煎蛋网上的妹子图片显示主站强制断开连接是什么问题啊
人家是防爬行的。你先找一个fiddler,然后自己上去浏览,同时抓包。根据抓包结果分析它的防盗链的办法。比如使用ref, 使用cookie, 使用javascript, 随机地址,防并发下载,验证码,使用特殊HTTP方法等等。防盗是有代价的,通常网站还是用防多线程下载实现的。
你用爬虫下载的时候,最好不要用多线程。这样会给网站很大的压力。单线程已经很快了,为什么还要暴力爬行。
③ python3 做一个多线程下载文件的程序 多线程问题
可以用is_active来判断。
不过你可以预分配文件空间,直接写,主要不冲突就行了。
④ python多线程的一些问题
#随便写了下没有验证有问题追问
importurllib
importthreading
classDownPic(threading.Thread):
def__init__(self,url,savePath):
self.url=url
self.savePath=savePath
defreporthook(self,bk,bs,size):
print"Downloading%.2f%%"%(bk*bs/size*100),sys.stdout.write(" "),
defgetPic(self,url=self.url,savePath=self.savePath):
urllib.urlretrieve(url,savePath,self.reporthook)
defrun(self):
self.getPic()
if__name__=="__main__":
urlList={1,2,3,4,5}#replacewithyoururlList
savePath="d:/1.jpg"#replacewithyoursavePath
forurlinurlList:
down=DownPic(url,savePath)
down.start()
⑤ python如何实现文件的下载,请尽量详细,高分!!!
import os,urllib.request,re
os.chdir(r'd:')
data = urllib.request.urlopen(url).read()
with open(filename, 'wb') as f:
f.write(data)
url就是你要下载的文件链接,filename就是下载后保存的文件名。这段代码是把文件下载在d盘根目录下,你可以自己修改。
不过是单线程的,想要多线程下载,比较复杂,我没有试过,这个下载小文件还是没有问题的。
⑥ python爬虫下载图片速度很慢如何解决,具体点,新手
下载慢这个很难判断啥原因,而且你没把代码贴出来,你又没说爬虫是自己写的还是用第三方成熟库,很可能你没使用多线程来下载操作。
⑦ python多线程有什么作用
线程在程序中是独立的、并发的执行流。与分隔的进程相比,进程中线程之间的隔离程度要小,它们共享内存、文件句柄和其他进程应有的状态。
因为线程的划分尺度小于进程,使得多线程程序的并发性高。进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。
线程比进程具有更高的性能,这是由于同一个进程中的线程都有共性多个线程共享同一个进程的虚拟空间。线程共享的环境包括进程代码段、进程的公有数据等,利用这些共享的数据,线程之间很容易实现通信。
操作系统在创建进程时,必须为该进程分配独立的内存空间,并分配大量的相关资源,但创建线程则简单得多。因此,使用多线程来实现并发比使用多进程的性能要高得多。
总结起来,使用多线程编程具有如下几个优点:
进程之间不能共享内存,但线程之间共享内存非常容易。
操作系统在创建进程时,需要为该进程重新分配系统资源,但创建线程的代价则小得多。因此,使用多线程来实现多任务并发执行比使用多进程的效率高。
Python语言内置了多线程功能支持,而不是单纯地作为底层操作系统的调度方式,从而简化了 Python 的多线程编程。
在实际应用中,多线程是非常有用的。比如一个浏览器必须能同时下载多张图片;一个 Web 服务器必须能同时响应多个用户请求;图形用户界面(GUI)应用也需要启动单独的线程,从主机环境中收集用户界面事件……总之,多线程在实际编程中的应用是非常广泛的。
⑧ python怎么一次性下载多个文件
我觉得最简单的办法借助celery分布式下载,或者手写多线程、多进程进行文件下载。
⑨ 用python写的一个下载浏览器图片的代码,不知道哪出错了,执行不了
你去把类的知识好好看看,先创建对象,再调用方法
⑩ python多线程作用
总结起来,使用多线程编程具有如下几个优点:
进程之间不能共享内存,但线程之间共享内存非常容易。
操作系统在创建进程时,需要为该进程重新分配系统资源,但创建线程的代价则小得多。因此,使用多线程来实现多任务并发执行比使用多进程的效率高。
Python 语言内置了多线程功能支持,而不是单纯地作为底层操作系统的调度方式,从而简化了 Python 的多线程编程。
在实际应用中,多线程是非常有用的。比如一个浏览器必须能同时下载多张图片;一个 Web 服务器必须能同时响应多个用户请求;图形用户界面(GUI)应用也需要启动单独的线程,从主机环境中收集用户界面事件……总之,多线程在实际编程中的应用是非常广泛的。