当前位置:首页 » 编程语言 » pythonwith锁

pythonwith锁

发布时间: 2022-10-09 03:07:09

㈠ 深入解析python中的线程同步方法

深入解析Python中的线程同步方法
同步访问共享资源
在使用线程的时候,一个很重要的问题是要避免多个线程对同一变量或其它资源的访问冲突。一旦你稍不留神,重叠访问、在多个线程中修改(共享资源)等这些操作会导致各种各样的问题;更严重的是,这些问题一般只会在比较极端(比如高并发、生产服务器、甚至在性能更好的硬件设备上)的情况下才会出现。
比如有这样一个情况:需要追踪对一事件处理的次数
counter = 0

def process_item(item):
global counter
... do something with item ...
counter += 1
如果你在多个线程中同时调用这个函数,你会发现counter的值不是那么准确。在大多数情况下它是对的,但有时它会比实际的少几个。
出现这种情况的原因是,计数增加操作实际上分三步执行:
解释器获取counter的当前值计算新值将计算的新值回写counter变量
考虑一下这种情况:在当前线程获取到counter值后,另一个线程抢占到了CPU,然后同样也获取到了counter值,并进一步将counter值重新计算并完成回写;之后时间片重新轮到当前线程(这里仅作标识区分,并非实际当前),此时当前线程获取到counter值还是原来的,完成后续两步操作后counter的值实际只加上1。
另一种常见情况是访问不完整或不一致状态。这类情况主要发生在一个线程正在初始化或更新数据时,另一个进程却尝试读取正在更改的数据。
原子操作
实现对共享变量或其它资源的同步访问最简单的方法是依靠解释器的原子操作。原子操作是在一步完成执行的操作,在这一步中其它线程无法获得该共享资源。
通常情况下,这种同步方法只对那些只由单个核心数据类型组成的共享资源有效,譬如,字符串变量、数字、列表或者字典等。下面是几个线程安全的操作:
读或者替换一个实例属性读或者替换一个全局变量从列表中获取一项元素原位修改一个列表(例如:使用append增加一个列表项)从字典中获取一项元素原位修改一个字典(例如:增加一个字典项、调用clear方法)
注意,上面提到过,对一个变量或者属性进行读操作,然后修改它,最终将其回写不是线程安全的。因为另外一个线程会在这个线程读完却没有修改或回写完成之前更改这个共享变量/属性。

锁是Python的threading模块提供的最基本的同步机制。在任一时刻,一个锁对象可能被一个线程获取,或者不被任何线程获取。如果一个线程尝试去获取一个已经被另一个线程获取到的锁对象,那么这个想要获取锁对象的线程只能暂时终止执行直到锁对象被另一个线程释放掉。
锁通常被用来实现对共享资源的同步访问。为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁,则当前线程需等待其被释放),待资源访问完后,再调用release方法释放锁:
lock = Lock()

lock.acquire() #: will block if lock is already held
... access shared resource
lock.release()

注意,即使在访问共享资源的过程中出错了也应该释放锁,可以用try-finally来达到这一目的:
lock.acquire()
try:
... access shared resource
finally:
lock.release() #: release lock, no matter what

在Python 2.5及以后的版本中,你可以使用with语句。在使用锁的时候,with语句会在进入语句块之前自动的获取到该锁对象,然后在语句块执行完成后自动释放掉锁:
from __future__ import with_statement #: 2.5 only

with lock:
... access shared resource

acquire方法带一个可选的等待标识,它可用于设定当有其它线程占有锁时是否阻塞。如果你将其值设为False,那么acquire方法将不再阻塞,只是如果该锁被占有时它会返回False:
if not lock.acquire(False):
... 锁资源失败
else:
try:
... access shared resource
finally:
lock.release()

你可以使用locked方法来检查一个锁对象是否已被获取,注意不能用该方法来判断调用acquire方法时是否会阻塞,因为在locked方法调用完成到下一条语句(比如acquire)执行之间该锁有可能被其它线程占有。
if not lock.locked():
#: 其它线程可能在下一条语句执行之前占有了该锁
lock.acquire() #: 可能会阻塞

简单锁的缺点
标准的锁对象并不关心当前是哪个线程占有了该锁;如果该锁已经被占有了,那么任何其它尝试获取该锁的线程都会被阻塞,即使是占有锁的这个线程。考虑一下下面这个例子:
lock = threading.Lock()

def get_first_part():
lock.acquire()
try:
... 从共享对象中获取第一部分数据
finally:
lock.release()
return data

def get_second_part():
lock.acquire()
try:
... 从共享对象中获取第二部分数据
finally:
lock.release()
return data

示例中,我们有一个共享资源,有两个分别取这个共享资源第一部分和第二部分的函数。两个访问函数都使用了锁来确保在获取数据时没有其它线程修改对应的共享数据。
现在,如果我们想添加第三个函数来获取两个部分的数据,我们将会陷入泥潭。一个简单的方法是依次调用这两个函数,然后返回结合的结果:

def get_both_parts():
first = get_first_part()
seconde = get_second_part()
return first, second

这里的问题是,如有某个线程在两个函数调用之间修改了共享资源,那么我们最终会得到不一致的数据。最明显的解决方法是在这个函数中也使用lock:
def get_both_parts():
lock.acquire()
try:
first = get_first_part()
seconde = get_second_part()
finally:
lock.release()
return first, second

然而,这是不可行的。里面的两个访问函数将会阻塞,因为外层语句已经占有了该锁。为了解决这个问题,你可以通过使用标记在访问函数中让外层语句释放锁,但这样容易失去控制并导致出错。幸运的是,threading模块包含了一个更加实用的锁实现:re-entrant锁。
Re-Entrant Locks (RLock)

RLock类是简单锁的另一个版本,它的特点在于,同一个锁对象只有在被其它的线程占有时尝试获取才会发生阻塞;而简单锁在同一个线程中同时只能被占有一次。如果当前线程已经占有了某个RLock锁对象,那么当前线程仍能再次获取到该RLock锁对象。
lock = threading.Lock()
lock.acquire()
lock.acquire() #: 这里将会阻塞

lock = threading.RLock()
lock.acquire()
lock.acquire() #: 这里不会发生阻塞

RLock的主要作用是解决嵌套访问共享资源的问题,就像前面描述的示例。要想解决前面示例中的问题,我们只需要将Lock换为RLock对象,这样嵌套调用也会OK.
lock = threading.RLock()

def get_first_part():
... see above

def get_second_part():
... see above

def get_both_parts():
... see above

这样既可以单独访问两部分数据也可以一次访问两部分数据而不会被锁阻塞或者获得不一致的数据。
注意RLock会追踪递归层级,因此记得在acquire后进行release操作。
Semaphores

信号量是一个更高级的锁机制。信号量内部有一个计数器而不像锁对象内部有锁标识,而且只有当占用信号量的线程数超过信号量时线程才阻塞。这允许了多个线程可以同时访问相同的代码区。
semaphore = threading.BoundedSemaphore()
semaphore.acquire() #: counter减小

... 访问共享资源
semaphore.release() #: counter增大

当信号量被获取的时候,计数器减小;当信号量被释放的时候,计数器增大。当获取信号量的时候,如果计数器值为0,则该进程将阻塞。当某一信号量被释放,counter值增加为1时,被阻塞的线程(如果有的话)中会有一个得以继续运行。
信号量通常被用来限制对容量有限的资源的访问,比如一个网络连接或者数据库服务器。在这类场景中,只需要将计数器初始化为最大值,信号量的实现将为你完成剩下的事情。
max_connections = 10

semaphore = threading.BoundedSemaphore(max_connections)

如果你不传任何初始化参数,计数器的值会被初始化为1.
Python的threading模块提供了两种信号量实现。Semaphore类提供了一个无限大小的信号量,你可以调用release任意次来增大计数器的值。为了避免错误出现,最好使用BoundedSemaphore类,这样当你调用release的次数大于acquire次数时程序会出错提醒。
线程同步

锁可以用在线程间的同步上。threading模块包含了一些用于线程间同步的类。
Events

一个事件是一个简单的同步对象,事件表示为一个内部标识(internal flag),线程等待这个标识被其它线程设定,或者自己设定、清除这个标识。
event = threading.Event()

#: 一个客户端线程等待flag被设定
event.wait()

#: 服务端线程设置或者清除flag
event.set()
event.clear()

一旦标识被设定,wait方法就不做任何处理(不会阻塞),当标识被清除时,wait将被阻塞直至其被重新设定。任意数量的线程可能会等待同一个事件。
Conditions

条件是事件对象的高级版本。条件表现为程序中的某种状态改变,线程可以等待给定条件或者条件发生的信号。
下面是一个简单的生产者/消费者实例。首先你需要创建一个条件对象:

#: 表示一个资源的附属项
condition = threading.Condition()
生产者线程在通知消费者线程有新生成资源之前需要获得条件:
#: 生产者线程
... 生产资源项
condition.acquire()
... 将资源项添加到资源中
condition.notify() #: 发出有可用资源的信号
condition.release()
消费者必须获取条件(以及相关联的锁),然后尝试从资源中获取资源项:
#: 消费者线程
condition.acquire()
while True:
...从资源中获取资源项
if item:
break
condition.wait() #: 休眠,直至有新的资源
condition.release()
... 处理资源

wait方法释放了锁,然后将当前线程阻塞,直到有其它线程调用了同一条件对象的notify或者notifyAll方法,然后又重新拿到锁。如果同时有多个线程在等待,那么notify方法只会唤醒其中的一个线程,而notifyAll则会唤醒全部线程。
为了避免在wait方法处阻塞,你可以传入一个超时参数,一个以秒为单位的浮点数。如果设置了超时参数,wait将会在指定时间返回,即使notify没被调用。一旦使用了超时,你必须检查资源来确定发生了什么。
注意,条件对象关联着一个锁,你必须在访问条件之前获取这个锁;同样的,你必须在完成对条件的访问时释放这个锁。在生产代码中,你应该使用try-finally或者with.
可以通过将锁对象作为条件构造函数的参数来让条件关联一个已经存在的锁,这可以实现多个条件公用一个资源:
lock = threading.RLock()
condition_1 = threading.Condition(lock)
condition_2 = threading.Condition(lock)

互斥锁同步
我们先来看一个例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import time, threading

# 假定这是你的银行存款:
balance = 0
muxlock = threading.Lock()

def change_it(n):
# 先存后取,结果应该为0:
global balance
balance = balance + n
balance = balance - n

def run_thread(n):
# 循环次数一旦多起来,最后的数字就变成非0
for i in range(100000):
change_it(n)

t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
t3 = threading.Thread(target=run_thread, args=(9,))
t1.start()
t2.start()
t3.start()
t1.join()
t2.join()
t3.join()
print balance

结果 :

[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
61
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
24

上面的例子引出了多线程编程的最常见问题:数据共享。当多个线程都修改某一个共享数据的时候,需要进行同步控制。
线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。互斥锁为资源引入一个状态:锁定/非锁定。某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便的处理锁定:
#创建锁mutex = threading.Lock()
#锁定mutex.acquire([timeout])
#释放mutex.release()

其中,锁定方法acquire可以有一个超时时间的可选参数timeout。如果设定了timeout,则在超时后通过返回值可以判断是否得到了锁,从而可以进行一些其他的处理。
使用互斥锁实现上面的例子的代码如下:
balance = 0
muxlock = threading.Lock()

def change_it(n):
# 获取锁,确保只有一个线程操作这个数
muxlock.acquire()
global balance
balance = balance + n
balance = balance - n
# 释放锁,给其他被阻塞的线程继续操作
muxlock.release()

def run_thread(n):
for i in range(10000):
change_it(n)

加锁后的结果,就能确保数据正确:
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0

㈡ python中with语句的作用

with语句相当于你定义一个类的时候定义了__enter__()和__exit__()这个两个方法。
在我们进行文件操作的的时候会用到open方法,后面有了with open以后就不再只使用open方法了,为什么?因为with open方法简单,我们不用再去管关闭文件了,即使中间发生异常,with open也会帮我们把文件关闭掉,以下示例演示下with open方法;
class File(object):
"""文件操作类"""
def __init__(self, filepath, mode):
self.filepath = filepath
self.mode = mode

def __enter__(self):
"""打开文件"""
self.file = open(self.filepath, self.mode)
print("打开文件")
return self.file

def __exit__(self, exc_type, exc_val, exc_tb):
"""关闭文件"""
print("关闭文件")
self.file.close()

if __name__ == '__main__':
with File('log.log', 'r') as file:
file.write("家啊")

可以看出来有了__enter__()和__exit__(),我们自定义的类也可以使用with了

㈢ 如何用python 中with 用法

要使用 with 语句,首先要明白上下文管理器这一概念。有了上下文管理器,with 语句才能工作。
下面是一组与上下文管理器和with 语句有关的概念。
上下文管理协议(Context Management Protocol):包含方法 __enter__() 和 __exit__(),支持
该协议的对象要实现这两个方法。
上下文管理器(Context Manager):支持上下文管理协议的对象,这种对象实现了
__enter__() 和 __exit__() 方法。上下文管理器定义执行 with 语句时要建立的运行时上下文,
负责执行 with 语句块上下文中的进入与退出操作。通常使用 with 语句调用上下文管理器,
也可以通过直接调用其方法来使用。
运行时上下文(runtime context):由上下文管理器创建,通过上下文管理器的 __enter__() 和
__exit__() 方法实现,__enter__() 方法在语句体执行之前进入运行时上下文,__exit__() 在
语句体执行完后从运行时上下文退出。with 语句支持运行时上下文这一概念。
上下文表达式(Context Expression):with 语句中跟在关键字 with 之后的表达式,该表达式
要返回一个上下文管理器对象。

㈣ python中with是什么意思

关键字

with 的一般执行过程
一段基本的 with 表达式,其结构是这样的:
with EXPR as VAR:
BLOCK
其中: EXPR 可以是任意表达式; as VAR 是可选的。

㈤ Python中的锁都具有哪些

大致罗列一下:
一、全局解释器锁(GIL)
1、什么是全局解释器锁
每个CPU在同一时间只能执行一个线程,那么其他的线程就必须等待该线程的全局解释器,使用权消失后才能使用全局解释器,即使多个线程直接不会相互影响在同一个进程下也只有一个线程使用cpu,这样的机制称为全局解释器锁(GIL)。GIL的设计简化了CPython的实现,使的对象模型包括关键的内建类型,如:字典等,都是隐含的,可以并发访问的,锁住全局解释器使得比较容易的实现对多线程的支持,但也损失了多处理器主机的并行计算能力。
2、全局解释器锁的好处
1)、避免了大量的加锁解锁的好处
2)、使数据更加安全,解决多线程间的数据完整性和状态同步
3、全局解释器的缺点
多核处理器退化成单核处理器,只能并发不能并行。
4、GIL的作用:
多线程情况下必须存在资源的竞争,GIL是为了保证在解释器级别的线程唯一使用共享资源(cpu)。
二、同步锁
1、什么是同步锁?
同一时刻的一个进程下的一个线程只能使用一个cpu,要确保这个线程下的程序在一段时间内被cpu执,那么就要用到同步锁。
2、为什么用同步锁?
因为有可能当一个线程在使用cpu时,该线程下的程序可能会遇到io操作,那么cpu就会切到别的线程上去,这样就有可能会影响到该程序结果的完整性。
3、怎么使用同步锁?
只需要在对公共数据的操作前后加上上锁和释放锁的操作即可。
4、同步锁的所用:
为了保证解释器级别下的自己编写的程序唯一使用共享资源产生了同步锁。
三、死锁
1、什么是死锁?
指两个或两个以上的线程或进程在执行程序的过程中,因争夺资源或者程序推进顺序不当而相互等待的一个现象。
2、死锁产生的必要条件?
互斥条件、请求和保持条件、不剥夺条件、环路等待条件
3、处理死锁的基本方法?
预防死锁、避免死锁(银行家算法)、检测死锁(资源分配)、解除死锁:剥夺资源、撤销进程
四、递归锁
在Python中为了支持同一个线程中多次请求同一资源,Python提供了可重入锁。这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。递归锁分为可递归锁与非递归锁。
五、乐观锁
假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。
六、悲观锁
假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。
python常用的加锁方式:互斥锁、可重入锁、迭代死锁、互相调用死锁、自旋锁大致罗列一下:
一、全局解释器锁(GIL)
1、什么是全局解释器锁
每个CPU在同一时间只能执行一个线程,那么其他的线程就必须等待该线程的全局解释器,使用权消失后才能使用全局解释器,即使多个线程直接不会相互影响在同一个进程下也只有一个线程使用cpu,这样的机制称为全局解释器锁(GIL)。GIL的设计简化了CPython的实现,使的对象模型包括关键的内建类型,如:字典等,都是隐含的,可以并发访问的,锁住全局解释器使得比较容易的实现对多线程的支持,但也损失了多处理器主机的并行计算能力。
2、全局解释器锁的好处
1)、避免了大量的加锁解锁的好处
2)、使数据更加安全,解决多线程间的数据完整性和状态同步
3、全局解释器的缺点
多核处理器退化成单核处理器,只能并发不能并行。
4、GIL的作用:
多线程情况下必须存在资源的竞争,GIL是为了保证在解释器级别的线程唯一使用共享资源(cpu)。
二、同步锁
1、什么是同步锁?
同一时刻的一个进程下的一个线程只能使用一个cpu,要确保这个线程下的程序在一段时间内被cpu执,那么就要用到同步锁。
2、为什么用同步锁?
因为有可能当一个线程在使用cpu时,该线程下的程序可能会遇到io操作,那么cpu就会切到别的线程上去,这样就有可能会影响到该程序结果的完整性。
3、怎么使用同步锁?
只需要在对公共数据的操作前后加上上锁和释放锁的操作即可。
4、同步锁的所用:
为了保证解释器级别下的自己编写的程序唯一使用共享资源产生了同步锁。
三、死锁
1、什么是死锁?
指两个或两个以上的线程或进程在执行程序的过程中,因争夺资源或者程序推进顺序不当而相互等待的一个现象。
2、死锁产生的必要条件?
互斥条件、请求和保持条件、不剥夺条件、环路等待条件
3、处理死锁的基本方法?
预防死锁、避免死锁(银行家算法)、检测死锁(资源分配)、解除死锁:剥夺资源、撤销进程
四、递归锁
在Python中为了支持同一个线程中多次请求同一资源,Python提供了可重入锁。这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。递归锁分为可递归锁与非递归锁。
五、乐观锁
假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。
六、悲观锁
假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。
python常用的加锁方式:互斥锁、可重入锁、迭代死锁、互相调用死锁、自旋锁

㈥ python的with语句如何使用求详解!

其实你可以这样理解with ,就是可以自动维护一下上下文,并自动回收资源。
file = open("/tmp/foo.txt")
try:

data = file.read()
finally:
file.close()
这是不使用with的实现
with open("/tmp/foo.txt") as file:
data = file.read()
这是使用with的实现。

㈦ Python其实很简单 第十五章 文件操作

在各种变量中保存的数据都是临时的,随着程序运行结束都会丢失。要做到数据长期有效,必须建立在磁盘中建立文件,将数据输入到文件中并保存。需要获取数据时需要打开文件读取。

而我们自己建立的程序都是应用程序,从本质上讲,应用程序是无法直接操作计算机的硬件的,譬如读写磁盘中文件,这就需要调用操作系统中的相应命令。接下来我们使用的Python内置函数open()、write()都是通过调用操作系统的相关命令才实现文件读写的,至于其中的细节,我们就不需要考虑了。

15.1创建和打开文件

在Python 中创建或打开文件,实际上是建立一个对象,该对象通过调用内置的open()函数创建或打开一个文件。

语法:

file object = open(filename [, mode][, buffering])

参数说明如下:

filename:file_name变量是一个包含了你要访问的文件名称的字符串值;

mode:mode决定了打开文件的模式:只读,写入,追加等。所有可取值见如下的完全列表。这个参数是非强制的,默认文件访问模式为只读(r)。

Buffering:如果buffering的值被设为0,就不会有寄存;如果buffering的值取1,访问文件时会寄存行;如果将buffering的值设为大于1的整数,表明了这就是的寄存区的缓冲大小;如果取负值,寄存区的缓冲大小则为系统默认。

mode参数的参数值及说明

对于其中最难区别的r、r+、w、w+、a、a+几个参数的区别总结如下,要特别注意指针的位置:

下面举例说明open( )函数的使用方法。

例1:

>>> file=open(Ƈ.py')

如果文件“1.py”存在,则可以打开此文件;如果文件“1.py”不存在,则会出现如下提示:

Traceback (most recent call last):

File " ", line 1, in

file=open(Ƈ.py')

FileNotFoundError: [Errno 2] No such file or directory: Ƈ.py'

例2:

>>> file=open(Ɗ.py',’a+’)

虽然文件“4.py”不存在,但运行并未出现错误,参见上表,“a+”的含义是以读写模式打开文件,如果该文件已经存在,新内容将以追加方式写入;如果该文件不存在,则新建文件用于写入。查看文件夹,发现已经生成了一个新的文件4.py。

例3:

file=open('python.png','rb')

print(file)

运行结果:

这就是说,虽然Python可以打开一个图片格式的文件,但print()并不能将其输出,还需要第三方库中模块的相应方法去处理,如PIL中的open()f方法。

例4:

file = open("f.txt", "w",encoding='utf-8')

# 以只写模式打开文件f.txt,编码方式为utf-8

print( "文件名: ", file.name) # 输出文件名

print( "是否已关闭 : ", file.closed) # 文件是否打开

print( "访问模式 : ", file.mode) # 文件访问模式

运行结果:

文件名: f.txt

是否已关闭 : False

访问模式 : w

例5:


15.2关闭文件

打开文件使用后要及时关闭,以免造成不必要的破坏,同时也可以释放内存。在Python中使用close()方法可以关闭文件。

语法格式:

file.close()

其中,file为文件对象。


15.3 with语句

with 语句适用于对资源进行访问的场合,确保不管使用过程中是否发生异常都会执行必要的“清理”操作,释放资源,比如文件使用后自动关闭、线程中锁的自动获取和释放等。

with语句的语法格式如下:

with expression as target:

with-body

其中,expression用于指定一个表达式,譬如打开文件的open()函数。target用于指定一个变量,并且将expression的结果保存到该变量中,譬如文件对象file。with-body用于指定with语句体,譬如一些文件操作的相关语句,如果没有要执行的语句体,则直接用pass语句代替。

假设python当前目录下存在一个test.txt文件,其内容如下:

Python是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。

Python是交互式语言: 这意味着,您可以在一个 Python 提示符 >>> 后直接执行代码。

Python是面向对象语言: 这意味着Python支持面向对象的风格或代码封装在对象的编程技术。

Python是初学者的语言:Python 对初级程序员而言,是一种伟大的语言,它支持广泛的应用程序开发。

举例如下:

with open('test.txt','r',encoding='utf-8') as file:

line=file.readline() # readline()方法可以读取文件一行数据,接下来就会讲到。

print(line)

运行结果如下:

Python是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。

而此时,我们给该段代码with语句之外再增加一个读取文件的语句,代码如下:

with open('test.txt','r',encoding='utf-8') as file:

line=file.readline()

print(line)


line2=file.readline()

print(line2)

发现出现了如下错误提示:

Traceback (most recent call last):

File "C:/Users/zym/AppData/Local/Programs/Python/Python39/3.py", line 5, in

line2=file.readline()

ValueError: I/O operation on closed file.

意思是要读取的文件已经被关闭了。

由此可知,当with语句运行结束后,被打开的test.txt文件就自动关闭了。

15.4读取文件

在Python 中读取文件的方法有:

1、读取指定个数的字符

格式如下:

File.read([size])

其中,file为打开的文件对象。size为可选参数,可以指定要读取的字符个数,省缺表示读取所有内容。

在调用read()方法读取文件内容时,文件必须是以r(只读)或者r+(读写)方式打开。

如:

with open('test.txt','r',encoding='utf-8') as file:

txt=file.read() (或txt=file.read(10))

print(txt)

将读取、输出test.txt文件的全部内容(或前10个字符)。

2、移动文件的指针

对于刚打开的文件,文件指针总是指向文件头的。也可以通过seek()方法将文件的指针移动到新的位置。

格式如下:

file.seek(offset[,whence])

其中,file表示已经打开的文件对象;offset用于指定移动的字符个数;whence表示从哪个位置起始计算个数,其值为0表示从文件头开始计算,其值为1表示从当前位置开始计算,其值为2表示从文件尾开始计算,默认值为0。

例如:

with open('test.txt','r',encoding='utf-8') as file:

string=file.read(9)

print('取9个字符: '+string)

file.seek(2) #指针从文件头开始移动2个字符

string=file.read(9) #从当前位置读取10个字符

输出结果:

取9个字符:

Python是一种

取9个字符:

thon是一种解释


而下面的代码会抛出错误:

with open('test.txt','r',encoding='utf-8') as file:

file.seek(2,1) #指针从当前位置开始移动2个字符

string=file.read(10) #从当前位置读取10个字符

print('取10个字符: '+string)

错误提示为:

Traceback (most recent call last):

File "C:.py", line 7, in

file.seek(2,1) #指针从当前位置开始移动2个字符

io.UnsupportedOperation: can't do nonzero cur-relative seeks

原因在于,必须使用b模式(即rb)打开文件,才能使用whence参数。但是,b模式(二进制)不适合文本文件。对于test.txt这样的文本文件,为了解决通过改变指针读取任意位置字符,可以采用加一个位置变量的方法来存储指针的值。

例如:

with open('test.txt','r',encoding='utf-8') as file:

#utf-8汉字与英文字符都占一个字符

string='' #设置一个空字符串

pointer=0 #当前指针为0

str1=file.read(6) #读取6个字符

pointer+=6 #指针变量后移6个字符

string+=str1 #string用来存放已读取的字符

print('取6个字符: ',str1)

file.seek(pointer) #指针从文件头开始移动2个字符

str1=file.read(8) #从当前位置读取10个字符

pointer+=8 #指针跳过已读取的字符

string+=str1

print('再取8个字符: ',str1)

print('所有读取的字符: ',string)

print('当前指针所处的位置: ',pointer)

str1=file.read(1)

print('当前指针所处的字符: ',str1)


运行结果如下:

取6个字符:

Python

再取8个字符:

是一种解释型语言

所有读取的字符:

Python是一种解释型语言

当前指针所处的位置:

14

当前指针所处的字符:


3、读取一行数据readline()方法

语法格式:

file.readline()

例:

with open('test.txt','r',encoding='utf-8') as f:

string=f.read(1) # 读取文件的第一个字符

if string != '': # 防止文件为空文件

lineno=0

while True:

line=f.readline()

if line != '':

lineno+=1

print('第'+str(lineno)+'行:'+line,end='')

# 因为每行都有自带的分行符,print()语句不允许换行

else:

break # 出现空行时停止读取

else:

print('要读取的文件为空文件!')

运行结果:

第1行:ython是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。

第2行:Python是交互式语言: 这意味着,您可以在一个 Python 提示符 >>> 后直接执行代码。

第3行:Python是面向对象语言: 这意味着Python支持面向对象的风格或代码封装在对象的编程技术。

第4行:Python是初学者的语言:Python 对初级程序员而言,是一种伟大的语言,它支持广泛的应用程序开发。

4、读取全部行命令readlines()方法

语法格式:

File.readlines()

该方法与read()方法一样,在调用read()方法读取文件内容时,文件必须是以r(只读)或者r+(读写)方式打开。

例:

with open('test.txt','r',encoding='utf-8') as f:

txt=f.readlines()

print(txt)

运行结果:

['Python是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。 ', 'Python是交互式语言: 这意味着,您可以在一个 Python 提示符 >>> 后直接执行代码。 ', 'Python是面向对象语言: 这意味着Python支持面向对象的风格或代码封装在对象的编程技术。 ', 'Python是初学者的语言:Python 对初级程序员而言,是一种伟大的语言,它支持广泛的应用程序开发。 ']

从上面的运行结果可以看出,readlines()方法的返回值为一个字符串行表。所以,也可以以读取列表元素的方法输出。如下所示:

with open('test.txt','r',encoding='utf-8') as f:

txt=f.readlines()

for line in txt:

print(line,end='')

运行结果:

Python是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。

Python是交互式语言: 这意味着,您可以在一个 Python 提示符 >>> 后直接执行代码。

Python是面向对象语言: 这意味着Python支持面向对象的风格或代码封装在对象的编程技术。

Python是初学者的语言:Python 对初级程序员而言,是一种伟大的语言,它支持广泛的应用程序开发。

15.5 写入文件内容

语法格式如下:

file.write(string)

其中,file为打开的文件对象,string为要写入的字符串。

写入文件内容时,文件必须以w(可写)或a(追加)模式打开。否则,会抛出如下异常提示:

Traceback (most recent call last):

File "C:.py", line 2, in

f.write('人生苦短,我用Python!')

io.UnsupportedOperation: not writable

关于write()方法的用法举例如下:

with open('test.txt','a',encoding='utf-8') as f:

f.write('人生苦短,我用Python!')

with open('test.txt','r',encoding='utf-8') as f:

txt=f.read()

print(txt)

运行结果:

Python是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。

Python是交互式语言: 这意味着,您可以在一个 Python 提示符 >>> 后直接执行代码。

Python是面向对象语言: 这意味着Python支持面向对象的风格或代码封装在对象的编程技术。

Python是初学者的语言:Python 对初级程序员而言,是一种伟大的语言,它支持广泛的应用程序开发。

人生苦短,我用Python!

可以看出,由于文件的打开方式为a模式(追加模式),写入的内容被写入到文件的末尾。

在Python中,文件操作方法里没有类似于字符串内的计算长度、查找、替换、截取、分隔等方法,为什么没有?原因可能是文件的类型太复杂,譬如说二进制文件,上述操作的意义不大。如果仅仅要对文本文件进行上述操作,完全可以先把文件的内容读取到字符串中,再用相应的字符串函数或方法去操作就可以了。譬如,要将test.txt文件中的字符串‘Python’替换为’PHP’,则可以用如下代码完成:

txt1=''


with open('test.txt','r',encoding='utf-8') as f:

txt1=f.read() #先将文件内容存入字符串txt1中


txt2=txt1.replace('Python','PHP') #将txt1中的'Python'替换为'PHP',并存入txt2


with open('test.txt','w',encoding='utf-8') as f:

f.write(txt2) #将字符串txt2的内容写回到文件中


这里之所以分两步打开文件(第一次为r模式,第二次为w模式),而没有采用一次读写(r+、w+方式),因为那样比较容易出错。实践证明,将文件的读操作和写操作分开其实是非常正确的选择。

㈧ python with函数怎么用

with在python中并不是函数,是一个关键词语句,比如if就是关键词语句。

with大多用来打开一个文档。
比如:
with open('test.txt') as f:
f.read()

这样就可以读取名为test的文档里的内容,并且使用with语句不需要我们手动再调用文件的close()方法来关闭文件,如果test.txt文档对象不再被使用,with会自动关闭文档。比较智能一点。

㈨ 揭秘 Python 中的 with 关键字

正文

你有没有想过 with 语句是什么以及我们为什么使用它呢?请阅读这篇文章!我们中的许多人在 Python 代码中一遍又一遍地看到这个代码片段: with open( 'Hi.text' , 'w' ) as f:
f.write( "Hello, there" )

但是,我们中的一些人不知道 with 有什么用,以及为什么我们需要在这里使用它。在此阅读中,您将找到关于 with 可解决的几乎所有问题。让我们开始吧!


首先,让我们考虑一下如果不使用 with 关键字我们需要做什么。在这种情况下,我们需要先打开文件并 尝试 执行 write 。不管成功与否,我们最好在 最后 关闭它,所以我们的代码将如下所示:

f = open( 'Hi.text' , 'w' )
try :
f.write( 'Hello, there' )
finally :
f.close()

那么, with 关键字有什么用呢?它只是有助于将我们的 try..finally 代码缩短为 with... 的单个语句!这就是 with 语句用法。


那么,它到底是什么?事实上, with 语句本身在 Python 中并没有什么特别之处,它只是 Python 中 上下文管理器 的一个特性。 上下文管理器 ,引用自 Python 官方文档, 是一种让您在需要时准确分配和释放资源的方法 ,或者简单来说: 当您在某些资源上做某事时缩短您的代码片段 ,这意味着您可以自己定义 with 语句的用法!


我们如何做到这一点?嗯,很简单,你只需要实现两个 魔术函数 :一个叫做 __enter__ ,另一个叫做 __exit__ 。第一种方法是编写一个实现这两个函数的类,如下所示:

class My_file :
def __init__ (self, fname):
self.fname = fname
def __enter__ (self):
self.file = open(self.fname, 'w' )
return self.file
def __exit__ (self, exc_type, exc_val, exc_trace_back):
if self.file:
self.file.close()

在这里,我们创建了一个普通的 Python 类,实现了两个魔术函数。注意这两个函数的签名: __enter__ 只接受 self ,而 __exit__ 将接受更多参数,示例中的这三个是标准形式。这样,我们就可以直接使用:

with My_file( 'hello.txt' ) as f:
f.write( 'hello, world!' )

这里的 with 语句会先调用 __init__ 构造一个新对象,然后再调用 __enter__ 方法;最后,它会在代码块完成之前触发 __exit__ 方法。所以,上面代码的大致等价如下:

myfile = My_file( 'hello.txt' )
f = myfile.__enter__()
f.write( 'hello, world!' )
myfile.__exit(...)

实现 上下文管理器 的第二种方法是通过 装饰器 ,如下:

1.你 import contextmanager from contextlib

2.你写一个函数来实现你想要的 with 语句。

3.在函数上方添加一个装饰器 @contextmanager 。

4.使用你的 with your_function !


根据上面的介绍,让我们写一个 装饰器上下文管理器

from contextlib import contextmanager
@contextmanager
def my_file_open (fname):
try :
f = open(fname, 'w' )
yield f
finally :
print( 'Closing file' )
f.close()

with file_open( 'hi.txt' ) as f:
f.write( 'hello world' )

@contextmanager
def closing (f):
try :
f.write( "Finish writing" )
finally :
f.close()

with closing(open( "hi.text" )):
f.write( "hello world" )

例如,在上面的代码中,我们可以直接调用 with close(your_way_of_getting_resource) ,在你下面写的代码块即将完成之前( f.write("hello world") ),它会执行 try..finally 我们在上面定义的块。另一个是使用 suppress 工具。我们知道,在很多情况下,如果我们尝试获取一些资源,很可能在打开文件时会出现 FileNotFoundException 等错误。在某些情况下,我们希望捕获错误或抑制错误,以便程序继续正常运行。 suppress 是我们可以抑制警告的一种方式。你需要做的就是弄清楚你想要抑制哪个异常,并编写 with suppress(your_choice_of_exception) ,Python 将从这里开始处理它。在其他情况下,您可能只想在输入 with 代码块时执行某些操作。在这种情况下, nullcontext 对你来说会很方便。 nullcontext 只会返回你在 __enter__ 函数中定义的东西,而不会做任何其他事情。如果您在 Python 中处理 async 操作以访问资源,则 aclosure 是处理这种情况的实用工具。


总结


本文介绍了 with 语句的一些基本概念和用法及其底层工作原理。还有很多有趣的东西,请查看 Python 的 contextlib 文档。最后,祝您能像往常一样快乐学习和快乐编码!

链接:https://python.plainenglish.io/demystifying-the-with-keyword-in-python-53be94e8b31a

你还有什么想要补充的吗?

热点内容
我的世界工艺服务器传送点怎么搞 发布:2024-12-22 10:56:30 浏览:908
exprlinux 发布:2024-12-22 10:55:19 浏览:697
你知道甲鱼密码是多少吗 发布:2024-12-22 10:26:32 浏览:812
我的世界国服服务器开服 发布:2024-12-22 10:09:55 浏览:543
标题编译策略 发布:2024-12-22 10:04:45 浏览:223
android开发xml 发布:2024-12-22 10:00:20 浏览:64
sql服务器名称什么时候能写ip 发布:2024-12-22 09:53:19 浏览:129
域控制服务器怎么设置ip 发布:2024-12-22 09:43:23 浏览:883
csvreaderpython 发布:2024-12-22 09:43:13 浏览:770
linux更改用户 发布:2024-12-22 09:35:19 浏览:506