pythonknn
给样本数据集T={2,4,10,12,3,20,22,21,11,24} t={18},K=4 1. N={2,4,10,12},d1=16,d2=14,d3=8,d4=6 2.d={3},比较,N={4,10,12,3},d1=14,d2=8,d3=6,d4=15 3.d={20},比较,N={4,10,12,20},d1=14,d2=8,d3=6,d4=2 4.d={22},比较,N={10,12,20,22},
B. 谁可以提供Python环境中用KNN手写识别数据MNIST的读取代码
其实就是python怎么读取binnary
file
mnist的结构如下,选取train-images
TRAINING
SET
IMAGE
FILE
(train-images-idx3-ubyte):
[offset]
[type]
[value]
[description]
0000
32
bit
integer
0x00000803(2051)
magic
number
0004
32
bit
integer
60000
number
of
images
0008
32
bit
integer
28
number
of
rows
0012
32
bit
integer
28
number
of
columns
0016
unsigned
byte
??
pixel
0017
unsigned
byte
??
pixel
........
xxxx
unsigned
byte
??
pixel
也就是之前我们要读取4个
32
bit
integer
试过很多方法,觉得最方便的,至少对我来说还是使用
struct.unpack_from()
filename
=
'train-images.idx3-ubyte'binfile
=
open(filename
,
'rb')buf
=
binfile.read()
先使用二进制方式把文件都读进来
index
=
0magic,
numImages
,
numRows
,
numColumns
=
struct.unpack_from('>IIII'
,
buf
,
index)index
+=
struct.calcsize('>IIII')
然后使用struc.unpack_from
'>IIII'是说使用大端法读取4个unsinged
int32
然后读取一个图片测试是否读取成功
im
=
struct.unpack_from('>784B'
,buf,
index)index
+=
struct.calcsize('>784B')
im
=
np.array(im)im
=
im.reshape(28,28)
fig
=
plt.figure()plotwindow
=
fig.add_subplot(111)plt.imshow(im
,
cmap='gray')plt.show()
'>784B'的意思就是用大端法读取784个unsigned
byte
完整代码如下
import
numpy
as
npimport
structimport
matplotlib.pyplot
as
plt
filename
=
'train-images.idx3-ubyte'binfile
=
open(filename
,
'rb')buf
=
binfile.read()
index
=
0magic,
numImages
,
numRows
,
numColumns
=
struct.unpack_from('>IIII'
,
buf
,
index)index
+=
struct.calcsize('>IIII')
im
=
struct.unpack_from('>784B'
,buf,
index)index
+=
struct.calcsize('>784B')
im
=
np.array(im)im
=
im.reshape(28,28)
fig
=
plt.figure()plotwindow
=
fig.add_subplot(111)plt.imshow(im
,
cmap='gray')plt.show()
只是为了测试是否成功所以只读了一张图片
C. python knn能够用来干吗
如果你是在校生,你可以加入相关实验室。如果不是的话,有些python论坛或者编程论坛你可以进去看看,有相关项目练手。像码云,github上有很多python项目,你可以申请加入,当然要求较高。也可以把python2的程序用python3写(网上大多是用2写的爬...
D. knn算法算是一种python模型吗
“算法”不能算是“模型”,更不能说是“python模型”,因为python能实现的,c++、java等通用语言也能实现。
E. python 如何画出KD数
简单的KNN算法在为每个数据点预测类别时都需要遍历整个训练数据集来求解距离,这样的做法在训练数据集特别大的时候并不高效,一种改进的方法就是使用kd树来存储训练数据集,这样可以使KNN分类器更高效。
KD树的主要思想跟二叉树类似,我们先来回忆一下二叉树的结构,二叉树中每个节点可以看成是一个数,当前节点总是比左子树中每个节点大,比右子树中每个节点小。而KD树中每个节点是一个向量(也可能是多个向量),和二叉树总是按照数的大小划分不同的是,KD树每层需要选定向量中的某一维,然后根据这一维按左小右大的方式划分数据。在构建KD树时,关键需要解决2个问题:(1)选择向量的哪一维进行划分(2)如何划分数据。第一个问题简单的解决方法可以是选择随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。好的划分方法可以使构建的树比较平衡,可以每次选择中位数来进行划分,这样问题2也得到了解决。下面是建立KD树的Python代码:
def build_tree(data, dim, depth):
"""
建立KD树
Parameters
----------
data:numpy.array
需要建树的数据集
dim:int
数据集特征的维数
depth:int
当前树的深度
Returns
-------
tree_node:tree_node namedtuple
树的跟节点
"""
size = data.shape[0]
if size == 0:
return None
# 确定本层划分参照的特征
split_dim = depth % dim
mid = size / 2
# 按照参照的特征划分数据集
r_indx = np.argpartition(data[:, split_dim], mid)
data = data[r_indx, :]
left = data[0: mid]
right = data[mid + 1: size]
mid_data = data[mid]
# 分别递归建立左右子树
left = build_tree(left, dim, depth + 1)
right = build_tree(right, dim, depth + 1)
# 返回树的根节点
return Tree_Node(left=left,
right=right,
data=mid_data,
split_dim=split_dim)
对于一个新来的数据点x,我们需要查找KD树中距离它最近的节点。KD树的查找算法还是和二叉树查找的算法类似,但是因为KD树每次是按照某一特定的维来划分,所以当从跟节点沿着边查找到叶节点时候并不能保证当前的叶节点就离x最近,我们还需要回溯并在每个父节点上判断另一个未查找的子树是否有可能存在离x更近的点(如何确定的方法我们可以思考二维的时候,以x为原点,当前最小的距离为半径画园,看是否与划分的直线相交,相交则另一个子树中可能存在更近的点),如果存在就进入子树查找。
当我们需要查找K个距离x最近的节点时,我们只需要维护一个长度为K的优先队列保持当前距离x最近的K个点。在回溯时,每次都使用第K短距离来判断另一个子节点中是否存在更近的节点即可。下面是具体实现的python代码:
def search_n(cur_node, data, queue, k):
"""
查找K近邻,最后queue中的k各值就是k近邻
Parameters
----------
cur_node:tree_node namedtuple
当前树的跟节点
data:numpy.array
数据
queue:Queue.PriorityQueue
记录当前k个近邻,距离大的先输出
k:int
查找的近邻个数
"""
# 当前节点为空,直接返回上层节点
if cur_node is None:
return None
if type(data) is not np.array:
data = np.asarray(data)
cur_data = cur_node.data
# 得到左右子节点
left = cur_node.left
right = cur_node.right
# 计算当前节点与数据点的距离
distance = np.sum((data - cur_data) ** 2) ** .5
cur_split_dim = cur_node.split_dim
flag = False # 标记在回溯时是否需要进入另一个子树查找
# 根据参照的特征来判断是先进入左子树还是右子树
if data[cur_split_dim] > cur_data[cur_split_dim]:
tmp = right
right = left
left = tmp
# 进入子树查找
search_n(left, data, queue, k)
# 下面是回溯过程
# 当队列中没有k个近邻时,直接将当前节点入队,并进入另一个子树开始查找
if len(queue) < k:
neg_distance = -1 * distance
heapq.heappush(queue, (neg_distance, cur_node))
flag = True
else:
# 得到当前距离数据点第K远的节点
top_neg_distance, top_node = heapq.heappop(queue)
# 如果当前节点与数据点的距离更小,则更新队列(当前节点入队,原第k远的节点出队)
if - 1 * top_neg_distance > distance:
top_neg_distance, top_node = -1 * distance, cur_node
heapq.heappush(queue, (top_neg_distance, top_node))
# 判断另一个子树内是否可能存在跟数据点的距离比当前第K远的距离更小的节点
top_neg_distance, top_node = heapq.heappop(queue)
if abs(data[cur_split_dim] - cur_data[cur_split_dim]) < -1 * top_neg_distance:
flag = True
heapq.heappush(queue, (top_neg_distance, top_node))
# 进入另一个子树搜索
if flag:
search_n(right, data, queue, k)525354555657
以上就是KD树的Python实践的全部内容,由于本人刚接触python不久,可能实现上并不优雅,也可能在算法理解上存在偏差,如果有任何的错误或不足,希望各位赐教。
F. 常用Python机器学习库有哪些
Python作为一门理想的集成语言,将各种技术绑定在一起,除了为用户提供更方便的功能之外,还是一个理想的粘合平台,在开发人员与外部库的低层次集成人员之间搭建连接,以便用C、C++实现更高效的算法。
使用Python编程可以快速迁移代码并进行改动,无须花费过多的精力在修改代码与代码规范上。开发者在Python中封装了很多优秀的依赖库,可以直接拿来使用,常见的机器学习库如下:
1、Scikit-Learn
Scikit-Learn基于Numpy和Scipy,是专门为机器学习建造的一个Python模块,提供了大量用于数据挖掘和分析的工具,包括数据预处理、交叉验证、算法与可视化算法等一系列接口。
Scikit-Learn基本功能可分为六个部分:分类、回归、聚类、数据降维、模型选择、数据预处理。其中集成了大量分类、回归、聚类功能,包括支持向量机、逻辑回归、随机森林、朴素贝叶斯等。
2、Orange3
Orange3是一个基于组件的数据挖掘和机器学习软件套装,支持Python进行脚本开发。它包含一系列的数据可视化、检索、预处理和建模技术,具有一个良好的用户界面,同时也可以作为Python的一个模块使用。
用户可通过数据可视化进行数据分析,包含统计分布图、柱状图、散点图,以及更深层次的决策树、分层聚簇、热点图、MDS等,并可使用它自带的各类附加功能组件进行NLP、文本挖掘、构建网络分析等。
3、XGBoost
XGBoost是专注于梯度提升算法的机器学习函数库,因其优良的学习效果及高效的训练速度而获得广泛的关注。XGBoost支持并行处理,比起同样实现了梯度提升算法的Scikit-Learn库,其性能提升10倍以上。XGBoost可以处理回归、分类和排序等多种任务。
4、NuPIC
NuPIC是专注于时间序列的一个机器学习平台,其核心算法为HTM算法,相比于深度学习,其更为接近人类大脑的运行结构。HTM算法的理论依据主要是人脑中处理高级认知功能的新皮质部分的运行原理。NuPIC可用于预测以及异常检测,使用面非常广,仅要求输入时间序列即可。
5、Milk
Milk是Python中的一个机器学习工具包。Milk注重提升运行速度与降低内存占用,因此大部分对性能敏感的代码都是使用C++编写的,为了便利性在此基础上提供Python接口。重点提供监督分类方法,如SVMs、KNN、随机森林和决策树等。
G. python,knn算法的笔迹识别,总有地方报错,求大神帮忙
你想把这个参数的值打印出来,但参数并不存在,最简单的方法,把这句打印的语句注释掉
H. 如何用python实现knn算法
1. 数据分类:离散型标签 2. 数据回归:连续型标签 近邻算法的准则是:寻找接近新数据点的训练样本的数目,根据训练样本的信息来预测新数据点的某些信息。
I. 新手学习PYTHON中KNN算法的手写识别出现问题 求助
参考了其他博主的代码 想试着运行 然后去理解。结果一直报错,希望大神帮帮忙。
import numpy as np
import os
import kNN
def img2vector(filename):
"""函数将以文本格式出现的32*32的0-1图片,转变成一维特征数组,返回一维数组
Keyword argument:
filename -- 文本格式的图片文件
"""
imgvect = np.zeros((1, 1024))
fr = open(filename)
for i in range(32):
linestr = fr.readline()
for j in range(32):
imgvect[0, 32*i + j] = int(linestr[j])
return imgvect
def handwriteClassfiy(testfile, trainfile, k):
"""函数将trainfile中的文本图片转换成样本特征集和样本类型集,用testfile中的测试样本测试,无返回值
Keyword argument:
testfile -- 测试图片目录
trainfile -- 样本图片目录
"""
trainFileList = os.listdir(trainfile)
trainFileSize = len(trainFileList)
labels = []
trainDataSet = np.zeros((trainFileSize, 1024))
for i in range(trainFileSize):
filenameStr = trainFileList[i]
digitnameStr = filenameStr.split('.')[0]
digitLabels = digitnameStr.split('_')[0]
labels.append(digitLabels)
trainDataSet[i, :] = img2vector(trainfile + '/' + filenameStr)
testFileList = os.listdir(testfile)
testNumber = len(testFileList)
errorcount = 0.0
for testname in testFileList:
testdigit = img2vector(testfile + '/' + testname)
classifyresult = kNN.classfiy(testdigit, trainDataSet, labels, k)
testStr = testname.split('.')[0]
testDigitLabel = testStr.split('_')[0]
if classifyresult != testDigitLabel:
errorcount += 1.0
#print('this test real digit is:%s, and the result is: %s' % (testDigitLabel, classifyresult))
print('k = %d, errorRatio is: %f' % (k, errorcount/float(testNumber)))
return
if __name__ == '__main__':
filename = 'C:/Users/lx/Desktop/MachineLearning-master/kNN/use Python and NumPy/testDigits/0_1.txt'
traindir= 'C:/Users/lx/Desktop/MachineLearning-master/kNN/use Python and NumPy/trainingDigits'
testdir = 'C:/Users/lx/Desktop/MachineLearning-master/kNN/use Python and NumPy/testDigits'
handwriteClassfiy(testdir, traindir, 3)
错误提示Traceback (most recent call last):
File "kNN.py", line 56, in <mole>
handwriteClassfiy(testdir, traindir, 3)
File "kNN.py", line 43, in handwriteClassfiy
classifyresult = kNN.classfiy(testdigit, trainDataSet, labels, k)
AttributeError: mole 'kNN' has no attribute 'classfiy'
你这个文件是不是就叫 kNN.py ?如果是的话那你这个里面根本就没有 classfiy 这个属性,当然会报错。
另外,import kNN 是 import 自己?