简易python教程
① python入门教程
给大家整理的这套python学习路线图,按照此教程一步步的学习来,肯定会对python有更深刻的认识。或许可以喜欢上python这个易学,精简,开源的语言。此套教程,不但有视频教程,还有源码分享,让大家能真正打开python的大门,进入这个领域。现在互联网巨头,都已经转投到人工智能领域,而人工智能最好的编程语言就是python,未来前景显而易见。黑马程序员是国内最早开设人工智能的机构。一、首先先推荐一个教程
8天深入理解python教程:http://pan..com/s/1kVNmOar
主要讲解,python开发环境的构建,基础的数据类型,字符串如何处理等简单的入门级教程。
二、第二个教程,是系统的基础知识,学习周期大概一个月左右的时间,根据自己的学习能力吸收能力来定。 初学者只要跟着此套教程学习,入门完全没有问题。
学完后可掌握的核心能力
1、掌握基本的linux系统操作;
2、掌握Python基础编程语法;
3、建立起编程思维和面向对象思想;
可解决的现实问题:
字符串排序,切割,逆置;猜数字、飞机大战游戏;
市场价值:
具备编程思维,掌握Python基本语法,能开发出一些小游戏
所涉及知识点:
教程地址:http://pan..com/s/1i5mfB4D
三、拓展教程
1、网络爬虫-利用python实现爬取网页神技
第一天:https://pan..com/s/1b3CXYI
第二天:
2、Python之web开发利刃
第一天:
第二天:
3、python之大数据开发奇兵
② Python该怎么入门
对于python的入门
首先会学习python基础语法,面向对象编程与程序设计模式的理解、python数据分析基础、python网络编程、python并发与高效编程等等。
通过前期python学习来了解和掌握常量变量的使用,运算符的使用、流程控制的使用等,最后掌握python编程语言的基础内容。
并会对常见数据结构和相应算法进行学习,注重表格的处理,树结构的处理知识。
第二阶段主要学习内容是web页面开发、web页面特效开发、数据持久化开发、linux运维开发、linux测试开发、服务器集群架构等等。
对js的掌握并在网络前端中使用,而且需要详细将js学习并掌握,为将来从事全栈工作打下基础,也会学习linux操作系统的基础知识和掌握linux操作系统常用命令,并会学习linux自动化运维技巧等。
第三阶段主要学习网络爬虫,数据分析加人工智能:
这一个阶段需要学习的内容也是比较多的,例如:爬虫与数据、多线程爬虫、go语言、NoSQL数据库、Scrapy-Redis框架。
需要掌握爬虫的工作原理和设计思想,掌握反爬虫机制,并且通过学习NoSQL数据库和Scrapy-Redis框架,并且可以使用分布式爬虫框架实现大量数据的获取。
数据分析和人工智能阶段需要学习的数据分析、人工智能深度学习、量化交易模型、数据分析-特征工程和结果可视化和人工智能机器学习等等。
需要理解随机变量的数字特征的概念和性质,并会利用性质计算随机变量的数字特征,了解可视化过程,图形绘制。并且需要掌握Matplotlib模块、常用的机器学习算法等等。
最后就是对于python的入门学习,我们在学习理论、学习python语法基础的同时我们应该多动手、多联系。但是呢,对于我们零基础的小伙伴呢,一般不建议自学。
你肯定要问为什么?我就知道!原因大概有三点:
首先我们自学虽然成本低、学习时间灵活等,但是你想过没,你要自学到就业的程度大概需要多长时间,辞职在家学习,或者买个网课,每天听课、练,你可能需要1年左右,就这你还不一定能够学会、换不一定能够全面掌握企业需要的技术;然后报班学习的学员都已经学完工作半年了。
其次就是学习知识的系统性、前沿性。IT行业的学习一定要系统,不能说我们这里一点那里学一点,完了全是一片一片的知识点,听起来你都有涉及但是真正做项目反而使用不起来,很耽误时间。其次就是前沿性,学习时一定要选择最新的课程大纲、最新的课程。IT行业的技术更新很快。
最后就是就业服务和保障,我们选择报班学习一般都有就业服务,当然我们在学习完也会进行模拟面试和简历指导的等工作。其次就是服务,一般培训机构都有合作企业来招聘,大大增加了我们的就业机会。
总而言之你是零基础选择培训绝对是最快速的转行入门途径!
③ Python入门教程
Python支持五种基本数字类型,其中有三种整形类型。有符号整型 - 长整型、布尔值 浮点值 复数。
Python中字符串被定义为引号之间的字符集合。支持使用成对的单引号或双引号,三引号(三个连续的单引号或双引号)可以用来包含特殊字符。使用索引操作符([])和切片操作符([:])可以得到子字符串。索引规则:第一个字符的索引是0,最后一个字符的索引是-1。
加号(+)用于字符串连接运算,星号(*)则用于字符串重复。可以将列表和元组当成普通的“数组”,可以保存任意数量任意类型的Python对象。通过从0开始的数字索引访问元素。
列表和元组有几处重要的区别。列表元素用中括号([])包裹,元素的个数及元素值可以改变。元组用小括号(())包裹,不可以更改。通过切片元素([]和[:])可以得到子集,这点与字符串使用方法一致。
④ python入门教程(非常详细)
新手入门需要掌握编程环境的安装与使用、输入及输出语句的应用、运算表达式的使用等。
具体教程如下:
1、编程环境的安装与使用。比如Python的学习一般推荐软件自带的IDLE,简单好用。
示例
6、选择结构,这是让计算机具有一定的选择、判断能力的基础。比如我们常见的登录,VIP就要用到选择结构。
7、循环结构,这是让计算机具有重复的能力。前提是事件要具有一定的规律性,比如1,3,5,7,9……
8、文件的读取和写入,这个主要是针对大量的数据处理而言的。
一般来说,掌握以上内容就是入门了。
⑤ 入门Python的教程
Python是当下热门的计算机编程语言,本文介绍如何安装Python和写第一个Python程序,帮忙读者入门
访问Python的官方网站,下载适合自己操作系统的Python安装包并选择最新版本。本文使用的是windows10系统安装Python3.7做演示
下载后根据安装向导安装Python,安装成功后可以在开始程序列表中找Python(不同版本显示的版本号会有不同),如下图所示。
选择其中的“Python 3.7(64 bit)”,会打开一个可以执行Python代码的命令行窗口。Python 是一种解释型语言,不需要编译,可在Python命令窗口直接执行代码,比较容易上手和掌握。
在打开的Python命令行窗口输入第一行代码(这行代码的意思就是在窗口输出“Hello, Python”),并按下回车键执行代码
print("Hello, Python")
第一行代码执行后会输出结果“Hello, Python”,这是一行很简单的Python代码
我们接下来写一个简单的程序,循环输出1到10
for i in [1,2,3,4,5,6,7,8,9,10]:
print(i)
⑥ 如何系统地自学 Python
是否非常想学好 Python,一方面被琐事纠缠,一直没能动手,另一方面,担心学习成本太高,心里默默敲着退堂鼓?
幸运的是,Python 是一门初学者友好的编程语言,想要完全掌握它,你不必花上太多的时间和精力。
Python 的设计哲学之一就是简单易学,体现在两个方面:
语法简洁明了:相对 Ruby 和 Perl,它的语法特性不多不少,大多数都很简单直接,不玩儿玄学。
切入点很多:Python 可以让你可以做很多事情,科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,总有一个是你感兴趣并且愿意投入时间的。
- 用一种方法,最好是只有一种方法来做一件事。
废话不多说,学会一门语言的捷径只有一个: Getting Started
¶ 起步阶段
任何一种编程语言都包含两个部分:硬知识和软知识,起步阶段的主要任务是掌握硬知识。
硬知识
“硬知识”指的是编程语言的语法、算法和数据结构、编程范式等,例如:变量和类型、循环语句、分支、函数、类。这部分知识也是具有普适性的,看上去是掌握了一种语法,实际是建立了一种思维。例如:让一个 java 程序员去学习 Python,他可以很快的将 Java 中的学到的面向对象的知识 map 到 Python 中来,因此能够快速掌握 Python 中面向对象的特性。
如果你是刚开始学习编程的新手,一本可靠的语法书是非常重要的。它看上去可能非常枯燥乏味,但对于建立稳固的编程思维是必不可少。
下面列出了一些适合初学者入门的教学材料:
廖雪峰的 Python 教程 Python 中文教程的翘楚,专为刚刚步入程序世界的小白打造。
笨方法学 Python 这本书在讲解 Python 的语法成分时,还附带大量可实践的例子,非常适合快速起步。
The Hitchhiker’s Guide to Python! 这本指南着重于 Python 的最佳实践,不管你是 Python 专家还是新手,都能获得极大的帮助。
Python 的哲学:
学习也是一样,虽然推荐了多种学习资料,但实际学习的时候,最好只选择其中的一个,坚持看完。
必要的时候,可能需要阅读讲解数据结构和算法的书,这些知识对于理解和使用 Python 中的对象模型有着很大的帮助。
软知识
“软知识”则是特定语言环境下的语法技巧、类库的使用、IDE的选择等等。这一部分,即使完全不了解不会使用,也不会妨碍你去编程,只不过写出的程序,看上去显得“傻”了些。
对这些知识的学习,取决于你尝试解决的问题的领域和深度。对初学者而言,起步阶段极易走火,或者在选择 Python 版本时徘徊不决,一会儿看 2.7 一会儿又转到 3.0,或者徜徉在类库的大海中无法自拔,Scrapy,Numpy,Django 什么都要试试,或者参与编辑器圣战、大括号缩进探究、操作系统辩论赛等无意义活动,或者整天跪舔语法糖,老想着怎么一行代码把所有的事情做完,或者去构想圣洁的性能安全通用性健壮性全部满分的解决方案。
很多“大牛”都会告诫初学者,用这个用那个,少走弯路,这样反而把初学者推向了真正的弯路。
还不如告诉初学者,学习本来就是个需要你去走弯路出 Bug,只能脚踏实地,没有奇迹只有狗屎的过程。
选择一个方向先走下去,哪怕脏丑差,走不动了再看看有没有更好的解决途径。
自己走了弯路,你才知道这么做的好处,才能理解为什么人们可以手写状态机去匹配却偏要发明正则表达式,为什么面向过程可以解决却偏要面向对象,为什么我可以操纵每一根指针却偏要自动管理内存,为什么我可以嵌套回调却偏要用 Promise...
更重要的是,你会明白,高层次的解决方法都是对低层次的封装,并不是任何情况下都是最有效最合适的。
技术涌进就像波浪一样,那些陈旧的封存已久的技术,消退了迟早还会涌回的。就像现在移动端应用、手游和 HTML5 的火热,某些方面不正在重演过去 PC 的那些历史么?
因此,不要担心自己走错路误了终身,坚持并保持进步才是正道。
起步阶段的核心任务是掌握硬知识,软知识做适当了解,有了稳固的根,粗壮的枝干,才能长出浓密的叶子,结出甜美的果实。
¶ 发展阶段
完成了基础知识的学习,必定会感到一阵空虚,怀疑这些语法知识是不是真的有用。
没错,你的怀疑是非常正确的。要让 Python 发挥出它的价值,当然不能停留在语法层面。
发展阶段的核心任务,就是“跳出 Python,拥抱世界”。
在你面前会有多个分支:科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,这些都不是仅仅知道 Python 语法就能解决的问题。
拿爬虫举例,如果你对计算机网络,HTTP 协议,HTML,文本编码,JSON 一无所知,你能做好这部分的工作么?而你在起步阶段的基础知识也同样重要,如果你连循环递归怎么写都还要查文档,连 BFS 都不知道怎么实现,这就像工匠做石凳每次起锤都要思考锤子怎么使用一样,非常低效。
在这个阶段,不可避免要接触大量类库,阅读大量书籍的。
类库方面
“Awesome Python 项目”:vinta/awesome-python · GitHub
这里列出了你在尝试解决各种实际问题时,Python 社区已有的工具型类库,如下图所示:
vinta/awesome-python
你可以按照实际需求,寻找你需要的类库。
至于相关类库如何使用,必须掌握的技能便是阅读文档。由于开源社区大多数文档都是英文写成的,所以,英语不好的同学,需要恶补下。
书籍方面
这里我只列出一些我觉得比较有一些帮助的书籍,详细的请看豆瓣的书评:
科学和数据分析:
❖“集体智慧编程”:集体智慧编程 (豆瓣)
❖“数学之美”:数学之美 (豆瓣)
❖“统计学习方法”:统计学习方法 (豆瓣)
❖“Pattern Recognition And Machine Learning”:Pattern Recognition And Machine Learning (豆瓣)
❖“数据科学实战”:数据科学实战 (豆瓣)
❖“数据检索导论”:信息检索导论 (豆瓣)
爬虫:
❖“HTTP 权威指南”:HTTP权威指南 (豆瓣)
Web 网站:
❖“HTML & CSS 设计与构建网站”:HTML & CSS设计与构建网站 (豆瓣)
...
列到这里已经不需要继续了。
聪明的你一定会发现上面的大部分书籍,并不是讲 Python 的书,而更多的是专业知识。
事实上,这里所谓“跳出 Python,拥抱世界”,其实是发现 Python 和专业知识相结合,能够解决很多实际问题。这个阶段能走到什么程度,更多的取决于自己的专业知识。
¶ 深入阶段
这个阶段的你,对 Python 几乎了如指掌,那么你一定知道 Python 是用 C 语言实现的。
可是 Python 对象的“动态特征”是怎么用相对底层,连自动内存管理都没有的C语言实现的呢?这时候就不能停留在表面了,勇敢的拆开 Python 的黑盒子,深入到语言的内部,去看它的历史,读它的源码,才能真正理解它的设计思路。
这里推荐一本书:
“Python 源码剖析”:Python源码剖析 (豆瓣)
这本书把 Python 源码中最核心的部分,给出了详细的阐释,不过阅读此书需要对 C 语言内存模型和指针有着很好的理解。
另外,Python 本身是一门杂糅多种范式的动态语言,也就是说,相对于 C 的过程式、 Haskell 等的函数式、Java 基于类的面向对象而言,它都不够纯粹。换而言之,编程语言的“道学”,在 Python 中只能有限的体悟。学习某种编程范式时,从那些面向这种范式更加纯粹的语言出发,才能有更深刻的理解,也能了解到 Python 语言的根源。
这里推荐一门公开课
“编程范式”:斯坦福大学公开课:编程范式
讲师高屋建瓴,从各种编程范式的代表语言出发,给出了每种编程范式最核心的思想。
值得一提的是,这门课程对C语言有非常深入的讲解,例如C语言的范型和内存管理。这些知识,对阅读 Python 源码也有大有帮助。
Python 的许多最佳实践都隐藏在那些众所周知的框架和类库中,例如 Django、Tornado 等等。在它们的源代码中淘金,也是个不错的选择。
¶ 最后的话
每个人学编程的道路都是不一样的,其实大都殊途同归,没有迷路的人只有不能坚持的人!
希望想学 Python 想学编程的同学,不要犹豫了,看完这篇文章,
Just Getting Started !!!
⑦ Python 简明教程 ---13,Python 集合
目录
前几节我们已经介绍了Python 中的 列表list , 元组tuple 和 字典dict ,本节来介绍Python 中的最后一种数据结构—— 集合set 。
Python 中的 set 与 dict 很像,唯一的不同是, dict 中保存的是 键值对 ,而 set 中只保存 键 ,没有 值 。
Python 集合 有如下特点:
Python 集合的声明有两种方式:
创建 空集合 时,只能用 set() ,而不能用 {} :
创建 非空集合 时,可以用 set() ,也可以用 {} :
由于集合中的元素是唯一的,如果初始化时的 可迭代 数据中有重复的元素,则会自动删去重复的元素:
使用 len() 函数可以查看集合中元素的个数:
由于Python 集合中的元素的是无序的,所以可不能使用 下标 的方式来访问集合中的单个元素。
我们可以使用 for 循环 来遍历集合中的所有元素:
我们可以对两个集合进行如下运算:
交集与并集
in 运算
使用 dir(set) 查看集合支持的所有方法:
下面一一介绍这些 非魔法方法 ,共17 个。
1. add 方法
由于集合中的元素是唯一的,向集合中添加元素时有两种情况:
示例:
2. remove 方法
示例:
3. discard 方法
示例:
4. pop 方法
示例:
5. union 方法
示例:
6. update 方法
示例:
7. clear 方法
示例:
8. 方法
示例:
9. difference 方法
示例:
10. difference_update 方法
示例:
11. intersection 方法
示例:
12. intersection_update 方法
示例:
13. isdisjoint 方法
示例:
14. issubset 方法
示例:
15. issuperset 方法
示例:
16. symmetric_difference 方法
示例:
17. symmetric_difference_update 方法
示例:
(完。)
推荐阅读:
Python 简明教程 --- 8,Python 字符串函数
Python 简明教程 --- 9,Python 编码
Python 简明教程 ---10,Python 列表
Python 简明教程 ---11,Python 元组
Python 简明教程 ---12,Python 字典
⑧ python入门教程(非常详细)
python入门教程如下:
准备材料:windows电脑、python
1、这里简单告用python软件编写的一个关于货物售价折扣方面的一个计算程序,首先打开python软件。
⑨ python入门教程
Python语言是一种典型的脚本语言,简洁,语法约束少,接近人类语言。有丰富的数据结构,例如列表、字典、集合等。具有可移植性,支持面向过程和面向对象编程,并且开源。
下载安装:从python官网下载开发和运行环境程序。本例下载python-3.3.3.amd64的安装包,并安装。
开发工具:window系统中,python有多种开发工具,比如,一、直接在cmd命令窗口执行,但此种仅能单条语句执行,不能运行完整的程序。二、python自带的集成开发环境,可通过开始——所有程序——python3.3——IDLE(Python GUI)启动。三、其他集成开发环境,如PythonWin等,有编辑和调试能力,还实现了MFC类库存的包装。
本例中,使用python自带的开发环境。File—New File,新建py文档,编写程序,保存。Run——Run mole,可得到运行结果。
封装性:可以把属性、方法结合在一起,不可以直接访问对象的属性,仅能通过接口与对象发生联系。以下把方法和属性封装成了一个类。
构造器:python有3种类型的构造器,且一个类中仅可以定义一个构造器,若多个,则以最后为准。1.若不声明,则默认为一个没有任何操作的特殊的__init__方法,__init__(self),此时可通过obj = my_class()声明实例。 2.自声明__init__构造器,会覆盖默认的,且可以更新类的数据属性。3.构造器方法__new__(),用于不可变内置类型派生,不能通过实例访问属性,仅能通过类访问。
继承性:python支持多继承,且子类继承了父类的方法和属性。若子类中有和父类相同名称的方法,则子类会覆盖(Override)父类方法。父类方法依旧可以访问。
数据结构:有丰富的数据结构,例如列表、字典、集合等。本例简单介绍字典的使用。字典是键值对的无序集合,是可变对象。键在字典中是唯一的且必须是不可变对象。值可以是可变对象或不可变对象。以下例子对python字典的定义、访问、更新等的操作。
文件的读写:python系统提供open()函数建立文件对象,并打开要读写的文件。可对文件进行读,写,若不需要时,需关闭文件,释放系统资源。
其他:python的数据类型,如数字类型、字符串类型等。运算符、程序控制结构、函数、异常处理等内容。一些基本的用法,可在平时的使用中巩固加强。若熟知java,python上手会很快。